Math 208, Final Exam	Name:	
Signature:		
Student ID #:		Section $\#$: I

- You are allowed a Ti-30x IIS Calculator and one 8.5×11 inch paper with handwritten notes on both sides. Other calculators, electronic devices (e.g. cell phones, laptops, etc.), notes, and books are **not** allowed.
- Some questions require you to explain answers: no explanation, no credit.
- Try to show your work on all questions: no work, no partial credit.
- You may use the back of the exam for scratch work: please submit any additional paper you use.
- Place a box around your answer to each question.
- Raise your hand if you have a question.

1	/10
2	/10
3	/10
4	/10
5	/10
6	/10
7	/10
8	/10
Т	/80
	Good Luck!

(1) Let
$$A = \begin{pmatrix} 1 & 6 & 1 & 1 \\ -1 & 4 & 1 & 1 \\ 1 & 2 & -1 & 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 4 \\ 7 \\ 3 \end{pmatrix}$
(a) (5pt) Compute the RREF of the augmented matrix $(A|b)$.

$$\begin{pmatrix} 1 & 0 & 0 & -\frac{1}{3} & 1 \\ 0 & 1 & 0 & \frac{1}{3} & 1 \\ 0 & 0 & 1 & -\frac{2}{3} & 0 \end{pmatrix}$$

(b) (5pt) The set of all $x = (x_1 x_2 x_3 x_4)^T \in \mathbb{R}^4$ satisfying Ax = b is a line. Find the unique point in \mathbb{R}^4 where this line intersects the plane $x_2 = 0$.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 3 \end{pmatrix}$$

(2) Give examples of the following, or explain why not possible. (2pts each)
(a) A linear transformation T : ℝ² → ℝ³ which is one-to-one, but not onto. T(x, y) = (x, y, 0)

(b) A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ which is one-to-one, but not onto. Not possible—students may invoke the "unifying theorem".

(c) A diagonalizable matrix which is not invertible. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

(d) A matrix in RREF, w/ at least one entry $\neq 0$ or 1.. (1 2)

(e) An $n \times n$ matrix of rank n in RREF, w/ at least one entry $\neq 0$ or 1. Not possible—full rank implies there is pivot in every row and column, and from this it follows that only the identity matrix is possible.

(3) Let $R = \frac{1}{7} \begin{pmatrix} 2 & 6 & 3 \\ -6 & 3 & -2 \\ -3 & -2 & 6 \end{pmatrix}$ (a) (5pt) True or false: is $R^{-1} = R^T$? Justify

your answer. (Hint: you don't need to compute R^{-1} directly.)True—easiest to verify by computing the matrix product RR^{T} .

(b) (5pt) Find a nonzero vector $v \in \mathbb{R}^3$ such that Rv = v. We're looking for a nonzero vector in the nullspace of

$$R - I = \begin{pmatrix} -\frac{5}{7} & \frac{6}{7} & \frac{3}{7} \\ -\frac{6}{7} & -\frac{4}{7} & -\frac{2}{7} \\ -\frac{3}{7} & -\frac{2}{7} & -\frac{1}{7} \end{pmatrix}$$

Any nonzero multiple of

$$v = \left(\begin{array}{c} 0\\1\\-2\end{array}\right)$$

will do.

4

(4) Describe all values of t for which the given vectors span \mathbb{R}^n (w/ n = 2 in (a), n = 3 in (b) and (c), and n = 4 in (d).) (2.5 pts each)

(a)
$$\begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\6 \end{pmatrix}, \begin{pmatrix} t\\7 \end{pmatrix}$$
 All t except 7/2

(b)
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
, $\begin{pmatrix} 4\\t\\6 \end{pmatrix}$, $\begin{pmatrix} 7\\8\\9 \end{pmatrix}$ All t except 5

(c)
$$\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$
, $\begin{pmatrix} 0\\-1\\1+t \end{pmatrix}$, $\begin{pmatrix} 1\\t^2-3\\\cos(t) \end{pmatrix}$ All t except 0.

(d)
$$\begin{pmatrix} 0\\2\\3\\4 \end{pmatrix}$$
, $\begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}$, $\begin{pmatrix} t\\t\\2\\0 \end{pmatrix}$ No t whatsoever—3 vectors cannot span \mathbb{R}^4

(5) Consider the matrices
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$
(a) (5pts) Calculate $A^{-1}B \begin{pmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$

(b) (5pts) Calculate the determinant of the following
$$4 \times 4$$
 matrix: $4 \begin{vmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 & 2 \\ 1 & 2 & 2 & 4 \\ 0 & 3 & 0 & 4 \\ 3 & 6 & 4 & 8 \end{vmatrix}$

(The matrix in (b) is called the Kronecker product or tensor product $A \otimes B$.)

6

(6) Let A be a 3×3 matrix, and $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ its associated linear transformation, with the following eigenvalue/eigenvector pairs:

$$\lambda_{1} = 2, \quad \mathbf{v}_{1} = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix}^{T}$$
$$\lambda_{2} = 1, \quad \mathbf{v}_{2} = \begin{pmatrix} 3 & 4 & 0 \end{pmatrix}^{T}$$
$$\lambda_{3} = 0, \quad \mathbf{v}_{3} = \begin{pmatrix} 5 & 6 & 7 \end{pmatrix}^{T}$$

- (a) (2.5pt) What is the rank of A? 2
- (b) (2.5pt) What is the characteristic polynomial of A? $\lambda(\lambda 1)(\lambda 2) = \lambda^3 3\lambda^2 + 2\lambda$
- (c) (5pt) Calculate $T\left(\begin{pmatrix} 12 & 16 & 7 \end{pmatrix}^T\right) \begin{pmatrix} 8 \\ 12 \\ 0 \end{pmatrix}$

(7) Answer true/false, and justify answers: let $R = \begin{pmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $B = RAR^{T}$.

(a) T/F: R has 2 distinct, real eigenvaluesFalse—geometrically, one can see that rotation by any angle except multiples of π will never have a real eigenvector, hence no real eigenvalue

(b) T/F: B has 2 distinct, real eigenvalues True—notice that $RAR^T = A$ is a reflection matrix, with eigenvalues ± 1

(c) T/F: rank(A) = rank(B) = rank(R) = 2. True, since all three matrices are invertible— $R^{-1} = R^T$, and $A^{-1} = B^{-1} = A$.

(d) T/F: The linear system Bx = b has no solution $x \in \mathbb{R}^2$ for some $b \in \mathbb{R}^2$ False—there is a unique solution $x = B^{-1}b$.

(e) T/F: Both standard basis vectors in \mathbb{R}^2 are contained in the subspace of \mathbb{R}^2 spanned by all eigenvectors of B. True—fixing an eigenbasis $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ for B, we have $e_1 = (1/2)(v_1 + v_2)$ and $e_2 = (1/2)(v_1 - v_2)$

(8) The *Pell numbers* are a recursively-defined sequence of nonnegative integers. The first few terms of this sequence are

$$0, 1, 2, 5, 12, 29, 70, 169, 408, 985, \ldots$$

If p_n is the *n*-th Pell number, we have $p_1 = 0$, $p_2 = 1$, and when $n \ge 2$ we define $p_{n+1} = p_{n-1} + 2p_n$. Using matrices, we have the recursive formula

$$\begin{pmatrix} p_n \\ p_{n+1} \end{pmatrix} = A \begin{pmatrix} p_{n-1} \\ p_n \end{pmatrix} = A^n \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \text{where} \quad A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}.$$

The matrix A is diagonalizable—that is, $A = PDP^{-1}$ where P is an invertible 2×2 matrix and D is a 2×2 diagonal matrix.

(a) (6pts) Determine P and D that diagonalize A.

$$D = \begin{pmatrix} 1+\sqrt{2} & 0\\ 0 & 1-\sqrt{2} \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1\\ 1+\sqrt{2} & 1-\sqrt{2} \end{pmatrix}$$

(b) (4pts) Use (a) to find a simplified formula for p_n . $A^n \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1 & 1\\1+\sqrt{2} & 1-\sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} (1+\sqrt{2})^n & 0\\0 & (1-\sqrt{2})^n \end{pmatrix} \cdot (-2\sqrt{2})^{-1} \begin{pmatrix} 1-\sqrt{2} & -1\\-(1+\sqrt{2}) & 1 \end{pmatrix} \cdot \begin{pmatrix} 0\\1 \end{pmatrix}$ $= (-2\sqrt{2})^{-1} \begin{pmatrix} 1 & 1\\1+\sqrt{2} & 1-\sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} -(1+\sqrt{2})^n\\(1-\sqrt{2})^n \end{pmatrix}$ $= \begin{pmatrix} \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}\\ \frac{(1+\sqrt{2})^{n+1} - (1-\sqrt{2})^{n+1}}{2\sqrt{2}} \end{pmatrix},$ so $p_n = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}$