\qquad
Signature:
Student ID \#: \qquad

- You are allowed a Ti-30x IIS Calculator and one 8.5×11 inch paper with handwritten notes on both sides. Other calculators, electronic devices (e.g. cell phones, laptops, etc.), notes, and books are not allowed.
- Some questions require you to explain answers: no explanation, no credit.
- Try to show your work on all questions: no work, no partial credit.
- You may use the back of the exam for scratch work: please submit any additional paper you use.
- Place a box around your answer to each question.
- Raise your hand if you have a question.

1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
6	$/ 10$
7	$/ 10$
8	$/ 10$
T	$/ 80$
Good Luck!	

(1) Let $A=\left(\begin{array}{cccc}1 & 6 & 1 & 1 \\ -1 & 4 & 1 & 1 \\ 1 & 2 & -1 & 1\end{array}\right), \quad b=\left(\begin{array}{l}4 \\ 7 \\ 3\end{array}\right)$
(a) (5pt) Compute the RREF of the augmented matrix $(A \mid b)$.
(b) (5pt) The set of all $x=\left(x_{1} x_{2} x_{3} x_{4}\right)^{T} \in \mathbb{R}^{4}$ satisfying $A x=b$ is a line. Find the unique point in \mathbb{R}^{4} where this line intersects the plane $x_{2}=0$.
(2) Give examples of the following, or explain why not possible. (2pts each) (a) A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ which is one-to-one, but not onto.
(b) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which is one-to-one, but not onto.
(c) A diagonalizable matrix which is not invertible.
(d) A matrix in RREF, w/ at least one entry $\neq 0$ or 1 ..
(e) An $n \times n$ matrix of rank n in RREF, $\mathrm{w} /$ at least one entry $\neq 0$ or 1 .
(3) Let $R=\frac{1}{7}\left(\begin{array}{ccc}2 & 6 & 3 \\ -6 & 3 & -2 \\ -3 & -2 & 6\end{array}\right)$ (a) (5pt) True or false: is $R^{-1}=R^{T}$? Justify your answer. (Hint: you don't need to compute R^{-1} directly.)
(b) (5pt) Find a nonzero vector $v \in \mathbb{R}^{3}$ such that $R v=v$.
(4) Describe all values of t for which the given vectors span \mathbb{R}^{n} ($\mathrm{w} / n=2$ in (a), $n=3$ in (b) and (c), and $n=4$ in (d).) (2.5 pts each)
(a) $\binom{1}{2},\binom{2}{4},\binom{3}{6},\binom{t}{7}$
(b) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}4 \\ t \\ 6\end{array}\right),\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)$
(c) $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1+t\end{array}\right),\left(\begin{array}{c}1 \\ t^{2}-3 \\ \cos (t)\end{array}\right)$
(d) $\left(\begin{array}{l}0 \\ 2 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}t \\ t \\ 2 \\ 0\end{array}\right)$
(5) Consider the matrices $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), \quad B=\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)$
(a) $(5 \mathrm{pts})$ Calculate $A^{-1} B$
(b) (5pts) Calculate the determinant of the following 4×4 matrix:

$$
\left|\begin{array}{c|c}
a_{11} B & a_{12} B \\
\hline a_{21} B & a_{22} B
\end{array}\right|=\left|\begin{array}{cccc}
0 & 1 & 0 & 2 \\
1 & 2 & 2 & 4 \\
0 & 3 & 0 & 4 \\
3 & 6 & 4 & 8
\end{array}\right|
$$

(6) Let A be a 3×3 matrix, and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ its associated linear transformation, with the following eigenvalue/eigenvector pairs:

$$
\begin{array}{ll}
\lambda_{1}=2, & \mathbf{v}_{1}=\left(\begin{array}{lll}
1 & 2 & 0
\end{array}\right)^{T} \\
\lambda_{2}=1, & \mathbf{v}_{2}=\left(\begin{array}{lll}
3 & 4 & 0
\end{array}\right)^{T} \\
\lambda_{3}=0, & \mathbf{v}_{3}=\left(\begin{array}{lll}
5 & 6 & 7
\end{array}\right)^{T}
\end{array}
$$

(a) (2.5pt) What is the rank of A ?
(b) (2.5pt) What is the characteristic polynomial of A ?
(c) $(5 \mathrm{pt})$ Calculate $T\left(\left(\begin{array}{lll}12 & 16 & 7\end{array}\right)^{T}\right)$
(7) Answer true/false, and justify answers: let $R=\left(\begin{array}{cc}\frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right), \quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and $B=R A R^{T}$.
(a) T/F: R has 2 distinct, real eigenvalues
(b) T/F: B has 2 distinct, real eigenvalues
(c) $\mathrm{T} / \mathrm{F}: \operatorname{rank}(A)=\operatorname{rank}(B)=\operatorname{rank}(R)=2$.
(d) T / F : The linear system $B x=b$ has no solution $x \in \mathbb{R}^{2}$ for some $b \in \mathbb{R}^{2}$
(e) T/F: Both standard basis vectors in \mathbb{R}^{2} are contained in the subspace of \mathbb{R}^{2} spanned by all eigenvectors of B.
(8) The Pell numbers are a recursively-defined sequence of nonnegative integers. The first few terms of this sequence are

$$
0,1,2,5,12,29,70,169,408,985, \ldots
$$

If p_{n} is the n-th Pell number, we have $p_{1}=0, p_{2}=1$, and when $n \geq 2$ we define $p_{n+1}=p_{n-1}+2 p_{n}$. Using matrices, we have the recursive formula

$$
\binom{p_{n}}{p_{n+1}}=A\binom{p_{n-1}}{p_{n}}=A^{n}\binom{0}{1}, \quad \text { where } \quad A=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) .
$$

The matrix A is diagonalizable - that is, $A=P D P^{-1}$ where P is an invertible 2×2 matrix and D is a 2×2 diagonal matrix.
(a) (6pts) Determine P and D that diagonalize A.
(b) (4pts) Use (a) to find a simplified formula for p_{n} (Hint: this will involve some square roots and exponents depending on n.)

