

Math 208(A) Final

December 11, 2023

NAME:

Section: 10:30 or 11:30 (circle the one you are registered in)

UW EMAIL:

Instructions.

1

- Please write your initials in the top right hand corner of each page.
- There are 10 problems on this exam. Each one is worth 10 points for a total of 100 points. There is also one bonus problem at the end worth 5 points.
- For each problem below give a carefully explained solution using the vocabulary and notation from class. A correct answer with no supporting work or explanation will receive a zero.
- Simplify your answers, collect all terms, and reduce all fractions. Put a box around your final answers.
- You are allowed a simple calculator and notesheet. Other notes, electronic devices, etc are not allowed. Take a few pencils from your pencil case out and put all other items away for the duration of the exam.
- All the questions can be solved using (at most) simple arithmetic. (If you find yourself doing complicated calculations, there might be an easier solution...)
- This exam is printed doubled sided. The last page is intentionally blank. You can use this as scratch paper or for more room for your solutions, but please label your work clearly if you intend for us to grade it.
- Raise your hand if you have any questions or spot a possible error.

Good luck!

[^0](1) Compute the determinant of the following matrix and briefly explain the steps you use for your computation. Put a box around the final answer.
\[

$$
\begin{aligned}
& \operatorname{Det}\left[\begin{array}{rrrrr}
2 & 1 & 1 & 9 & -7 \\
0 & 1 & -6 & 1 & 4 \\
0 & 2 & 7 & 8 & -4 \\
0 & 2 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & -4
\end{array}\right]=2(-4)\left|\begin{array}{ccc}
1 & -6 & 1 \\
2 & 7 & 8 \\
2 & 0 & 0
\end{array}\right| \\
& \left|\begin{array}{ccc}
1 & -6 & 1 \\
2 & 7 & 8 \\
2 & 0 & 0
\end{array}\right|=2\left|\begin{array}{rr}
-6 & 1 \\
7 & 8
\end{array}\right|+0 \text { to by cofactis } \\
& \text { expansion along } \\
& \text { bottom sow } \\
& =2(-48-7)=-110 \\
& \text { Answer }=-8 \times-110=880
\end{aligned}
$$
\]

Note: other tests versions have differt answers. but the block decomposition is the same.

Other answers: $848,816,800$
(2) Find a 3×3 matrix A with eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ with $\lambda=1, \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ with $\lambda=2$ and $\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ with $\lambda=10$.

(3) Find a maximal size independent subset of the following vectors and briefly decribe the method you used to verify your claim.

$$
\begin{aligned}
& \text { you used to verify your claim. } \\
& {\left[\begin{array}{l}
1 \\
0 \\
1 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
-1 \\
0
\end{array}\right] \leftarrow \begin{array}{l}
\text { different on some tests so the } \\
\text { determinant below may vary, } \\
\text { but save 4 cols are independent in } \\
\text { each case. }
\end{array}}
\end{aligned}
$$

These vectors are in \mathbb{R}^{4} so at most 4 of the can be independent.
$\operatorname{Det}\left(\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 7 & 3 & 0 & 1\end{array}\right)=\operatorname{Det}\left(\left|\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right|=-1+2(-1)=-3\right.$
by co factor exparsioh
so the column vectors in the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
7 & 3 & 0 & 1
\end{array}\right)
$$

are a maximal size inclyped set of the given vectors.
(4) Give an example of a matrix that satisfies the following properties if possible or say "not possible" and give a brief justification. (2pts each)
(a) A 2×2 matrix that is nonzero in every entry and $A=A^{-1}$. Let's try building one by choosing eigenvalue $-1,1$ and eigenvectors $[1],\left[\begin{array}{l}2 \\ 1\end{array}\right]$:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & -4 \\
2 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{-1} \\
& A^{2}=\left[\begin{array}{ll}
3 & -4 \\
2 & -3
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
2 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { so } A=A^{-1} .
\end{aligned}
$$

(b) A 2×2 matrix that is nonzero in every entry and $A=2 A$.

Not possible $\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}2 a & 2 b \\ 2 c & 2 d\end{array}\right] \Rightarrow \begin{array}{l}a=0, b=0 \\ c=0,\end{array}\right]=0$ so no sued A exists.
(c) A 2×2 matrix that is nonzero in every entry and A and A^{2} have different eigenvectors.

$$
\text { From (a): } \begin{aligned}
& A=\left[\begin{array}{ll}
3 & -4 \\
2 & -3
\end{array}\right] \text { eigenvectors. } A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \text { so }\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { is not eigevecfar of } A . \\
& A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { has au }\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2} \text { as e igenvectivs. }
\end{aligned}
$$

(d) A 2×2 matrix that is nonzero in every entry and $A=A^{T}$.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]=A^{\top}
$$

(e) A 2×2 matrix that is nonzero in every entry and $A^{T}=A^{-1}$.

$$
A=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{{ }_{3}^{2}}{2} & -\frac{1}{2}
\end{array}\right]=A^{T}
$$

Clue.

$$
\left[\begin{array}{cc}
\frac{1}{2} & 5 / 2 \\
5 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 5 / 2 \\
5 / 2 & -1 / 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(5) Let $\mathbf{v}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$.
(a) Draw the three vectors $\mathbf{v}, B \mathbf{v}, B^{2} \mathbf{v}$ in \mathbb{R}^{2} labeling the axes and the endpoints of the vectors.

might start with \vec{v} in a different quadrant.

(b) Is there a value $k>0$ such that \mathbf{v} is an eigenvector of B^{k} ? If so, what is the eigenvalue λ such that $B^{k} \mathbf{v}=\lambda \mathbf{v}$? If not, explain why not.

$$
\begin{aligned}
& B v=\left[\begin{array}{cc}
1-1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \\
& B^{2} v=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
\end{aligned}
$$

But then Br and $B^{2} \vec{v}$ rotate it by 45° and stretch it.
B rotates by 45° and scales vectors.

$$
\begin{aligned}
& B\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& B^{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=B\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
& \text { So } B^{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=B\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2
\end{array}\right] \\
& B^{4}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=B\left[\begin{array}{c}
-2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-4 \\
0
\end{array}\right]=-4\left[\begin{array}{l}
6 \\
1
\end{array}\right] \\
& B^{4}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=B^{3}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=B^{2}\left[\begin{array}{c}
-2 \\
0
\end{array}\right]=B\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-4
\end{array}\right] \\
& \text { So } B^{4}=\left[\begin{array}{cc}
-4 & 0 \\
0 & -4
\end{array}\right] \text { and }\left[\begin{array}{ccc}
-4 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{c}
-1 \\
-2
\end{array}\right]=-4\left[\begin{array}{c}
-1 \\
-2
\end{array}\right]
\end{aligned}
$$

(6) Let A be the matrix

$$
A=\left[\begin{array}{rrrr}
3 & 1 & 1 & 60 \\
3 & -1 & 2 & 10 \\
1 & 1 & -1 & 20
\end{array}\right]
$$

(a) (2pts) What is the domain and codomain of the function $T(\mathbf{x})=A \mathbf{x}$?

$$
\text { domain }=\mathbb{R}^{4} \quad \text { codomain }=R^{3}
$$

since A is a 3×4 matrix
(b) $(4 \mathrm{pts})$ Give a basis for the range of T.

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

The cols of A span \mathbb{R}^{3}. $\operatorname{Det}\left(\begin{array}{ccc}3 & 1 & 1 \\ 3 & -1 & 2 \\ 1 & 1 & 1\end{array}\right) \neq 0$
(c) (4pts) What is the dimension of the kernel of T ? Justify your answer.

$$
\begin{aligned}
\mid & =\operatorname{dim}(\operatorname{ken}(T)) \cdot \text { by rank. mlliky th } \\
& =\operatorname{dim}(\operatorname{doman}(T))-\operatorname{dim}(\operatorname{range}(T))) \\
& =4-3
\end{aligned}
$$

(7) We have finally gotten data from our intergalactic frequency detector! The observations are

$$
f(-1)=8, f(0)=4, f(1)=4, f(2)=2
$$

It might be a polynomial function of the input. Please help us figure it out. Is there a cubic polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ that would match the data we have so far? If so, help us figure out the coefficients.
(a) (2pts) What equations must $a_{0}, a_{1}, a_{2}, a_{3}$ satisfy?

$$
\begin{aligned}
a_{0}-a_{1}+a_{2}-a_{3}=8 & \text { sine } f(-1)=8 \\
a_{0} & \text { since } f(0)=4 \\
a_{0}+a_{1}+a_{2}+a_{3}=4 & \text { since } f(1)=4 \\
a_{0}+2 a_{1}+4 a_{2}+8 a_{3}=2 & \text { sine } f(2)=2
\end{aligned}
$$

(b) (6pts) Find all possible solutions to these equations.

Sine $a_{0}=4$, lets eliminate that first + rede to

$$
3 \text { equations. } \begin{aligned}
-a_{1}+a_{2}-a_{3} & =4 \\
a_{1}+a_{2}+a_{3} & =0 \\
2 a_{1}+4 a_{2}+8 a_{3} & =-2
\end{aligned}
$$

use the augmented matrix, after switch the list +2 id equation
(c) (2pts) Write down $f(x)$ and verify the data above is satisfied.

$$
\begin{aligned}
& f(x)=4-x+2 x^{2}-x^{3} \\
& f(-1)=4+1+2+1=8 \\
& f(0)=4 \\
& f(1)=4-1+2-1=4 v \\
& f(2)=4-2+8-8=2
\end{aligned}
$$

(8) If C is the change of basis matrix that takes the basis \mathcal{B}_{1} to \mathcal{B}_{2} for \mathbb{R}^{n}, is C always, sometimes, or never invertible? Justify your answer.
always $C=B_{2}^{-1} B_{1}$ where
B_{1} is forme by the colum vectors in B_{1}, bars
B_{2} has colum in B_{2} basis.
$\therefore B_{1}, B_{2}$ are invertible s $n \times n$ matrices sine B_{1}, B_{2} ar bases of \mathbb{R}^{n}.

The product of 2 invertible metrics is invelitile.
Also $\operatorname{Det}\left(B_{2}^{-1} B_{1}\right)=\operatorname{Det}\left(B_{2}^{-1}\right) \cdot \operatorname{Det}\left(B_{1}\right) \neq 0$
$\sin \operatorname{Bet}\left(B_{2}^{-1}\right) \neq 0$ add $\operatorname{Det}\left(B_{1}\right) \neq 0$
(9) (a) Find 3×3 invertible matrices A and B such that $\operatorname{Det}(A+B)=\operatorname{Det}(A)+$ $\operatorname{Det}(B)$.
(b) For $n \times n$ matrices, does $\operatorname{Det}(A+B)=\operatorname{Det}(A)+\operatorname{Det}(B)$ always hold? Justify your answer.
a)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \operatorname{Det}(A)=1
\end{aligned}
$$

$$
\begin{array}{ll}
B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & A+B=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
\operatorname{Det}(B)=-1 & \operatorname{Det}(A+B)=0
\end{array}
$$

$$
\operatorname{Det}(A+B)=0=\operatorname{Det}(A)+\operatorname{Det}(B)
$$

b)

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=B \\
& \operatorname{Det}(A)=\operatorname{Det}(B)=1
\end{aligned} \quad A+B=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

(10) The Fibonacci sequence $1,1,2,3,5,8,13, \ldots$ is an infinite sequence given recursively by the formula $F_{n+1}=F_{n}+F_{n-1}$ and the initial conditions $F_{1}=1$ and $F_{2}=1$.
(a) (3pts) Find a matrix A such that $A^{n-1}\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{r}F_{n+1} \\ F_{n}\end{array}\right]$ and test it by computing $A\left[\begin{array}{l}5 \\ 3\end{array}\right]$.
Take $A=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ then $A\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{c}F_{n}+F_{n-1} \\ F_{n}\end{array}\right]=\left[\begin{array}{c}F_{n+1} \\ F_{n}\end{array}\right]$

$$
\begin{aligned}
& A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right], A^{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \\
& A^{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=A \cdot A^{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=A\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right] \text { eve. } \\
& \text { Test: } A\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{l}
11 \\
10
\end{array}\right]\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{l}
8 \\
5
\end{array}\right] \text { V }
\end{aligned}
$$

by the form la

$$
F_{n+1}=F_{n}+F_{n-1}
$$

(b) (3pts) What are the eigenvalues of A ?

$$
\begin{aligned}
& \operatorname{Det}(A-\lambda I)=\operatorname{Det}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right)=\operatorname{Det}\left(\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right) \\
&=(1-\lambda)^{2}-1=\lambda^{2}-\lambda-1
\end{aligned}
$$

Solvers $\lambda^{2}-\lambda-1=0$ via the quadratic forme we gut

$$
\lambda=\frac{1 \pm \sqrt{5}}{2} \text { so } A \frac{1+\sqrt{5}}{\frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{2}}{2}}
$$

(c) (2pts) What are the dimensions of the eigenspaces of A ?

Since A is 2×2 and has 2 distind eigenres we know the dimension of both eigen spares is 1.
(d) (2pts) Is A diagonalizable, invertible, both, or neither?

Both A is diagonalizable because it has 2 distinct eigewalos $\Rightarrow \mathbb{R}^{2}$ has a basis of eigenvetors for A.
A is invertible became $\operatorname{Det}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=-1 \neq 0$.
(11) (Bonus for 5 pts) Let S be the set of all 5×5 matrices with entries in $\{0,1\}$. What is the average of all determinants of matrices in S ? (Hint: matrices with determinant 0 contribute 0 to the average.)

Answer: 0

Why? Let $m_{5}(0,1)=$ the set of all 5×5 matrices $A=\left(a_{i j}\right)_{15 i, j \leq 5}$ with each $a_{i j} \in\{0,1\}$.

There are 2^{25} matrices with entries in $\{0,1\}$.
To find the average, we compute

$$
\text { Averge }=\frac{1}{2^{25}} \cdot \sum_{A \in \operatorname{Mat}}(0,1)<\operatorname{Det}^{(A)}=\frac{1}{2^{25}} \sum_{A \in \operatorname{Mat} 5(0,1)} \operatorname{Det}_{\substack{\text { st. } \operatorname{Det}(A) \neq 0}}
$$

Since the matrices with $\operatorname{Det}(A)=0$ wort change the Sum.
By the Unifying Theorem, we know that
$\operatorname{Det}(A) \neq 0 \Leftrightarrow$ the rows of A are independent.
In particular, if two rows of A are the same, then $\operatorname{Det}(A)=0$.

Case 1: If the first two rows of a 5×5 matrix A are the same then $\operatorname{Det}(A)=0$ since its rows are dependent.

Case 2: If the first two rows of A are different, we can pair it with $A^{\prime}=\left\{\begin{array}{l}\text { (2) } \\ \text { and } \\ \text { and }\end{array}\right) A$ switching
the top two rows. Then $\operatorname{Det}(A)+\operatorname{Det}\left(A^{\prime}\right)=0$.

$$
\text { average }=\frac{1}{2^{25}} \sum_{\substack{A \in \operatorname{mat}(0,1) \\ \text { st. } \operatorname{Det}(A) \neq 0}} \operatorname{Det}(A)=\frac{1}{2^{25}}\left[\sum_{\substack{A \in \operatorname{mat} f(1,1) \\ \text { st. } \operatorname{Det}(A)>0}} \operatorname{Det}(A)+\sum_{\substack{A \in \operatorname{mat}(0,1) \\ \text { st. } \operatorname{Det} f(A)<0}} \operatorname{Det}(A)\right]
$$

$=\bigcirc$ after cancelling all pairs.

[^0]: ${ }^{1}$ Test code: 3227

