NAME (First,Last) : \qquad

Student ID

\qquad

UW email \qquad

- Please use the same name that appears in Canvas.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough.
- Write your NAME (first, last) on top of every ODD page of this exam.
- If you run out of space, continue your work on the back of the last page and indicate clearly on the problem page that you have done so.
- Unless stated otherwise, you MUST show your work and justify your answers.
- Please be precise. Imprecise language such as "'this matrix is linearly independent"' or " 'this matrix is one to one"' will be marked down.
- Your work needs to be neat and legible.
- This exam contains 4 pages and 6 problems, please make sure you have a complete exam.

Problem 1 Read both parts of this problem, before you start doing calculations. You are given the vectors $v_{1}=(1, a,-1), v_{2}=(-1,1,2), v_{3}=(4,-4, a)$.

1. Find all values of a such that v_{1}, v_{2}, v_{3} do not $\operatorname{span} R^{3}$.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & 4 & 0 \\
a & 1 & -4 & 2 \\
-1 & 2 & a & b
\end{array}\right] \begin{array}{r}
r_{2}-a r_{1} \rightarrow r_{2} \\
r_{3}+r_{1} \rightarrow r_{3}
\end{array}\left[\begin{array}{cccc}
1 & -1 & 4 & 0 \\
0 & 1+a & -4-4 a & 2 \\
0 & 1 & a+4 & b
\end{array}\right] \quad \begin{array}{r}
r_{2} \\
\hat{\lambda}_{3}
\end{array}\left[\begin{array}{cccc}
1 & -1 & 4 & 0 \\
0 & 1 & a+4 & b \\
0 & 1+a & -4(1+a) & 2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & 4 & 0 \\
0 & 1 & a+4 & b \\
0 & 1 & -4 & 2 \\
a+1
\end{array}\right] r_{3}-r_{2} \rightarrow r_{3}\left[\left[\begin{array}{cccc}
1 & -1 & 4 & 0 \\
0 & 1 & a+4 & b \\
0 & 0 & -8-a & \frac{2}{a+1}-b
\end{array}\right], a \neq-1\right]} \\
& v_{1} v_{2} v_{3} \text { do not open } R^{3} \text { when } Q=-1 \text { or } Q=-8 \\
& \text { 2. Give an example of } a \text { and } b \text { such that the vector }(0,2, b) \text { is not in the span } \\
& \text { of } v_{1}, v_{2}, v_{3} \text {. Show your work to explain how you found your example. }
\end{aligned}
$$

For example if $a=-1 \quad b$ can be anything, as we see from (A) above, so $b=0$ would work.

NAME (First,Last) :

Problem 2 Suppose that the general solution in vector form of $A \vec{x}=0$ is $\left(-x_{4}, x_{4}, 2 x_{4}, x_{4}\right)$. Answer the following questions; remember to justify your answers. If you think that you do not have enough information to answer a question, just answer "'not enough information"'.

1. How many columns does A have ?

2. How many rows does A have?

We do not have enough in formation

3. Find a basis for $\operatorname{Null}(\mathrm{A})$, the nullspace of A

All solutions to $A x=0$ are of the form $x_{4}(-1,1,2,1)$ so $(-1,1,2,1)$ is a basis for Null (A)
4. What is the rank of A?

By rank nullity th: rank $=4-1=3$
5. Is the first column of A in the span of the other columns of A ?

Since for $x_{4}=1 \quad \underbrace{\left[\begin{array}{llll}c_{1} & c_{2} & c_{3} & c_{4}\end{array}\right]\left[\begin{array}{c}-1 \\ 1 \\ 2 \\ 1\end{array}\right]=-c_{1}+c_{2}+2 c_{3}+c_{4}=0}_{A}$
this tells us that $c_{1}=c_{2}^{3}+2 c_{3}+c_{G}$ so yes

Problem 3 Given $W=\left\{(x, y, z)\right.$ in $\left.R^{3}: x+y+z=0\right\}$
Find a 3×3 matrix A such that the null space of A is equal to W or explain why this is not possible.
$A=$ All rows of A need to be
of the form (k, k, k) for some k

Find a 3×3 matrix A such that $\operatorname{det}(\mathrm{A})=1$ and the column space of A is equal to W or explain why this is not possible.
W is a plane in R^{3} so it hes dimension 2, therefore if $\operatorname{col}(A)=w \quad \operatorname{renk} A=2$ so A is not invertible, but then $\operatorname{det}(A)=0 \neq 1 \quad$ IMPOSSIBLE

NAME (First,Last) :
Problem 4 Given $A=\left(\begin{array}{ll}2 & 5 \\ 5 & 2\end{array}\right) \quad A-\lambda I=\left[\begin{array}{cc}2-\lambda & 5 \\ 5 & 2-\lambda\end{array}\right]$

1. Find all eigenvalues of A.

$$
p(\lambda)=(2-\lambda)^{2}-25=0 \Leftrightarrow \quad 2-\lambda= \pm 5 \quad \lambda=7,-3
$$

2. For each eigenvalue λ you found, give a basis B for $E(\lambda)$ (the eigenspace of λ).

$$
E_{7}=N_{0} \|\left[\begin{array}{cc}
-5 & 5 \\
5 & -5
\end{array}\right] \text { beats } v_{1}=(1,1) ; \quad E_{-3}=N_{011}\left[\begin{array}{ll}
5 & 5 \\
5 & 5
\end{array}\right]
$$

basis $v_{2}=(1,-1)$
3. Diagonalize A , that is find matrices P and D with $A=P D P^{-1}$.

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
7 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}
$$

4. The columns of P form a basis B_{1} for R^{2}. Find $[(1,0)]_{B_{1}}$, the vector of coordinates of $(1,0)$ with respect to B_{1}.
you cen either celculete P^{-1} end then $P^{-1}\binom{1}{0}=[(1,0)]_{B,}$
or sole $\left[\begin{array}{rr:}1 & 1\end{array} 1\right.$

$$
[(1,0)]_{b_{\mathbf{1}}}=\left(\frac{1}{2}, \frac{1}{2}\right) \underset{ }{5 . \text { Find }\left[A\binom{1}{0}\right]_{B_{1}}(\text { Hint: can you use D ?) }} \text { meaning that } \mathbf{(},
$$

$$
\begin{aligned}
& D\left[\binom{1}{0}\right]_{B_{1}}=\left[A\binom{1}{0}\right]_{B_{1}} \\
& D\left[\binom{1}{0}\right]_{B_{1}}=\left[\begin{array}{rr}
7 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]=\left[\begin{array}{l}
7 / 2 \\
-3 / 2
\end{array}\right]
\end{aligned}
$$

Problem 5 Consider the linear transformation $T: R^{3} \rightarrow R^{2}$ defined by

$$
T(v)=\underbrace{\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 0 & -1
\end{array}\right)}_{\text {1. is } T \text { one to one ? }} v
$$

1. is T one to one ? Justify your answer.

No $3>2$, or: the columns of K ere not linearly independent
2. Is it possible to find a linear transformation $S: R^{2} \rightarrow R^{3} S(v)=B v$ for some matrix B, such that $T \circ S$, the composition of S and T , (recall that this means that $T \circ S(v)=T(S(v))$) is one to one ? If you think it is possible, find B, and show your work to explain how you found B. If you think this is not possible, justify why.

$T \circ S$ is one to one $\Leftrightarrow T\left(S\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $T\left(S\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ ere linearly independent. I can see that $T\left(\left[\begin{array}{l}1 \\ \vdots\end{array}\right]\right)$ end $T\left(\left[\begin{array}{l}0 \\ i\end{array}\right]\right)$ ere linearly independent so setting $S\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ end $S\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, that is $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)$ would work. $O R \quad B=\left[\begin{array}{ll}a & b \\ c & d \\ e & j\end{array}\right] \quad A B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right]=\left[\begin{array}{cc}a+2 c & b+2 d \\ -e & -f\end{array}\right]=\beta$ We need $\operatorname{Null}(B)=\{\overrightarrow{0}\}$ so, by the unifying theorem, et $B \neq 0$ pick eng values for e, b, c, d, e, f such the t

$$
-f(a+2 c)+e(b+2 d) \neq 0
$$

NAME (First,Last) :

Problem 6 Suppose A is a 3×3 matrix with characteristic polynomial $p(\lambda)=-\lambda(\lambda-2)^{2}$ and that the eigenspace for eigenvalue $\lambda=2$ is $E_{2}=\left\{(x, y, z)\right.$ in $\left.R^{3}: x+y+z=0\right\}$

1. Is A invertible? Justify your answer.

No $d=0$ is an eigenvalue for A
2. Is A diagonalizable? Justify your answer. Yes
$A M(0)=1$ and $G M(0)=\operatorname{dim} E_{0}$ must then be between 1 and 1 So $\quad G(0)=1$ and $E_{0}=\operatorname{spen}(v)$ for some v
E_{2} is a plane in R^{3} so it hes dimension 2 , therefore $E_{2}=\operatorname{spen}\left(v_{1} v_{2}\right)$ and $v v_{1} v_{2}$ is linearly independent, because when we put together bases of eigenspeces we elveys get linearly independent vectors. So $v v_{1} v_{2}$
3. What is the rank of A ? Justify your answer. is a basis for R^{3} consisting of eigenvectors of A. We cen diegonolize

$$
A \cdot A=\left[\begin{array}{lll}
v & v & v_{2} \\
& &
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
v & v_{1} & v_{2}
\end{array}\right]^{-1}
$$

By the discussion above nullity $A=1$
so $\operatorname{ren} k=3-1=2$

