Your Name
\square

Your Signature
\square

- Raise your hand if you have a question or if you need additional paper.
- Turn off and put away all cell phones, laptops, smart watches, and similar devices.
- You may use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes (both sides OK) and a TI-30X IIS scientific calculator. No other supplementary materials are allowed.
- You must justify all of your answers. In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your answer to each question.
- This exam has 10 pages, plus this cover sheet. Please make sure that your exam is complete.
- I strongly recommend briefly reading through the exam before you begin to answer any questions.

Question	Points	Score
1	16	
2	8	
3	8	
4	12	
5	10	

Question	Points	Score
6	8	
7	8	
8	12	
9	8	
10	10	
Total	100	

1. (16 points) For each of the situations below, either give an example (if possible) or explain why it is not possible. (If you give an example, you do not need to explain your answer.)
(a) A nonzero and non-identity matrix A where $A^{2}=A$.
(b) A set of nonzero orthogonal vectors in \mathbb{R}^{3}.
(c) A diagonalizable matrix that is not invertible.
(d) An invertible matrix that is not diagonalizable.
(e) A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \quad T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \quad \text { and } \quad T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

(f) A matrix A that is invertible but its inverse A^{-1} is not invertible.
(g) A set of linearly independent vectors that is not orthogonal.
(h) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that is one-to-one.
2. (8 points) Let $\chi_{M}(\lambda)=(\lambda+1)(\lambda-3)(\lambda+3)(\lambda+2)$.
(a) M is a \qquad \times \qquad matrix.
(b) The eigenvalues of M are \qquad .
(c) Is M invertible? Explain.
(d) Is M guaranteed to be diagonalizable? Explain.
3. (8 points) (a) Find a 3×7 matrix A with the following properties:

- A is in reduced echelon form, and
- $\operatorname{null}(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ 5 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right]\right\}$.
(b) The rank of A is \qquad , and the nullity of A is \qquad .

4. (12 points) Let $A=\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ -3 & 4 & 0 & 3 \\ 0 & 0 & 4 & 0 \\ 3 & 0 & 0 & 1\end{array}\right]$. We are told that $\chi_{A}(A)=(\lambda-4)^{3}(\lambda+2)$.
(a) For each eigenspace $E_{\lambda}(A)$, find a basis.
(b) Find matrices P and D where P is invertible, D is a diagonal matrix, and $A=P D P^{-1}$, or explain why it is impossible to do so. (Note: You do not need to calculate P^{-1}; just write down P and D and briefly explain where they came from.)
5. (10 points) The linear transformation T is defined

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{1}+x_{3} \\
2 x_{2}-x_{3}
\end{array}\right]
$$

(a) The domain of T is \qquad , and the codomain of T is \qquad .
(b) Find a matrix A such that $T(\vec{x})=A \vec{x}$.
(c) Find its inverse transformation T^{-1} or explain why T^{-1} cannot exist.
(d) Is T one-to-one? Is T onto? Explain your answers.
6. (8 points) Consider the matrix $A=\left[\begin{array}{cc}2 & 7 \\ 2 & -3\end{array}\right]$.
(a) Calculate $\chi_{A}(\lambda)$, the characteristic polynomial of A.

Given a polynomial $f(x)$ and a matrix M, we can evaluate $f(M)$ like in the following example:

$$
\begin{gathered}
f(x)=2 x^{2}-5
\end{gathered} M=\left[\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right] \quad M^{2}=\left[\begin{array}{ll}
-1 & 3 \\
-4 & 2
\end{array}\right],
$$

(Notice that the constant term c becomes $c I, c$ times the identity matrix.)
(b) Evaluate $\chi_{A}(A)$ for the matrix and characteristic polynomial above.
(c) Make a conjecture for the value of $\chi_{M}(M)$ for matrices and their characteristic polynomials in general. You do not need to show any additional work for this part.
7. (8 points) We are told that A and B are both $n \times n$ matrices and that \vec{v} is an eigenvector for both A and B. Let λ_{1} be the eigenvalue associated with A and \vec{v}. Let λ_{2} be the eigenvalue associated with B and \vec{v}.
(a) Show that \vec{v} is an eigenvector for the matrix $A B$.
(b) What is the associated eigenvalue for $A B$ and \vec{v} ?
(c) Assume that A is invertible. Show that \vec{v} is an eigenvector for A^{-1}.
(d) What is the associated eigenvalue for A^{-1} and \vec{v} ?
8. (12 points) Let S be the subspace defined

$$
S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
3 \\
4
\end{array}\right]\right\}
$$

(a) Find a basis for S^{\perp}. (S^{\perp} is the set of all vectors \vec{v} in \mathbb{R}^{4} where $\vec{v} \cdot \vec{s}=0$ for all $\vec{s} \in S$.)
(b) Find an orthogonal basis for S.
9. (8 points) S is a subspace of \mathbb{R}^{3}. The following sets β_{1} and β_{2} are both bases for S.

$$
\beta_{1}=\left\{\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \quad \beta_{2}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]\right\}
$$

(a) If $[\vec{x}]_{\beta_{1}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, find $[\vec{x}]_{\beta_{2}}$.
(b) Find \vec{x}, the representation of this vector in the standard basis.
10. (10 points) Let $A=\left[\begin{array}{ccc}x & -5 & -1 \\ 2 & 2 & x \\ 0 & -1 & -1\end{array}\right]$.
(a) Find the value(s) of x for which the matrix A is not invertible.
(b) Pick one of the value(s) of x from part (a) and use it for this part. For this value of x, find a basis for $\operatorname{col}(A)$. (If you cannot solve (a), pick any value for x for this part.)
I have picked the value $x=$ \qquad .

