(1) Find the determinant of the matrix
\[
\begin{bmatrix}
1 & 3 & 2 \\
0 & 1 & 1 \\
-2 & 0 & 4 \\
\end{bmatrix}
\begin{bmatrix}
8 & 0 & 3 \\
-1 & 1 & 1 \\
0 & 2 & 4 \\
\end{bmatrix}^{-1}.
\]

(2) (Geometry Question) (Note: This problem is repeated in Chapter 3 with fewer parts.) Suppose we are given the unit square \(A \) in the plane with corners \((0,0), (1,0), (1,1)\) and \((0,1)\).

(a) Find a linear transformation \(T \) that sends \(A \) to the parallelogram \(B \) with corners \((0,0), (1,2), (2,2)\) and \((1,0)\).

(b) Where does \(T \) send the point \((1/2,1/2)\), which was in \(A \)?

(c) Is the linear transformation \(T \) unique? Why or why not?

(d) What linear transformation \(T' \) would send \(A \) to itself?

(e) Calculate the area of \(B \). Do you see a relationship between this area and the matrix of the linear transformation \(T \)? Similarly is there a relationship between the area of \(A \) and \(T' \)?

(f) Suppose we want to not only send \(A \) to \(B \) but also push \(B \) in the horizontal direction by one unit. What map can do this?

(g) Let \(L \) be the linear span of the side of \(B \) with corners \((0,0)\) and \((1,2)\). Write \(L \) in parametric form: \(\mathbf{p} + t\mathbf{q} \) where \(t \) varies in some range and \(\mathbf{p}, \mathbf{q} \) are vectors. What is the range of \(t \) and what are \(\mathbf{p} \) and \(\mathbf{q} \)?

(h) Find the point in \(A \) that maps under \(T \) to the point \((1/2,1)\) on \(L \). In your parametric representation of \(L \), what is the representation of \((1/2,1)\)?

(i) How can you map \(A \) to a parallelogram \(C \) of area 4 while still keeping \((0,0)\) and \((1,0)\) as two of its corners?

(j) What is the general formula for the linear transformation that sends \(A \) to a parallelogram of area \(k \) while still keeping \((0,0)\) and \((1,0)\) as two of its corners?

(3) (The math world’s worst formula for computing inverses)
Let \(A = \begin{bmatrix} -2 & 0 & 2 \\ 1 & 1 & 1 \\ 3 & -1 & 5 \end{bmatrix} \).

(a) Compute all nine cofactors of \(A \), as well as \(\det(A) \). Let \(B \) be the \(3 \times 3 \) matrix containing the cofactors, with each entry multiplied by the appropriate \(\pm \) sign. So the \(ij \)-entry of \(B \) is \((-1)^{i+j} \det(M_{ij})\).

(b) Compute \(A \cdot B^T \). You should get a diagonal matrix with the same number in every diagonal entry. In other words, a multiple of the identity matrix. What multiple is it (in terms of \(A \))?

(c) Fill in the blank (with a scalar) to make this equation true:
\[
A \cdot B^T = (\ ?) \cdot I, \quad \text{therefore} \quad A^{-1} = \frac{1}{(\ ?)} \cdot B^T.
\]
(d) A similar formula works for larger $n \times n$ matrices, involving computing all the cofactors of A. But this formula is terrible for computational purposes for finding A^{-1}. Why? Compare it to our other method. (Note: Occasionally the formula is useful for theoretical purposes.)

(4) (Determinants and geometry)

(a) Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be rotation by $\pi/3$, i.e. $T(\vec{x})$ is the rotation of \vec{x} by $\pi/3$ around $\vec{0}$. Without computing any matrices, what would you expect $\det(T)$ to be? (Does T make areas larger or smaller?)

Guess, then check using the fact that the matrix for rotation by θ is

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

(b) Same question as (a), only this time let T be the transformation that reflects \mathbb{R}^2 over the line $y = x$. That is, $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} y \\ x \end{bmatrix}$. Guess what $\det(T)$ should be, then check by finding the matrix for T and computing its determinant.

(c) Rotation matrices in \mathbb{R}^3 are more complicated than in \mathbb{R}^2 because you have to specify an axis of rotation, which could be any line through the origin. Nonetheless, what would you expect $\det(T)$ to be? Look up the “basic 3D rotation matrices” on Wikipedia (https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions) and compute $\det(A)$ for each one.

(d) Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be projection onto the xy-plane, so $T(\begin{bmatrix} x \\ y \\ z \end{bmatrix}) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$. What is $\det(T)$? Guess, then check using a matrix.

(5) (Determinants and interpolation)

Suppose we want to make a quadratic polynomial

$$y = f(x) = a_0 + a_1 x + a_2 x^2$$

that passes through three specified points $\mathbf{p}_1 = (p_1, q_1), \mathbf{p}_2 = (p_2, q_2), \mathbf{p}_3 = (p_3, q_3)$. Consider the equation

$$0 = \det \begin{bmatrix} 1 & x & x^2 & y \\ 1 & p_1 & p_1^2 & q_1 \\ 1 & p_2 & p_2^2 & q_2 \\ 1 & p_3 & p_3^2 & q_3 \end{bmatrix}.$$

The determinant above implicitly gives an equation $y = f(x)$ (it’s easy to solve for y since no y^2, y^3, etc terms appear).

(a) Write out the matrix above, using $\mathbf{p}_1 = (0, 0), \mathbf{p}_2 = (1, 1), \mathbf{p}_3 = (3, 5)$ for the constants p_i, q_i, but leaving x and y as variables. Solve the equation $\det(A) = 0$ to get $y = f(x)$, a quadratic polynomial in x. Check directly that the parabola passes through $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$.
(b) Why does part (a) succeed? Examine the matrix A from part (a). If you plug in $(x, y) = p_1 = (0, 0)$ to the first row of A, the first two rows will become the same. So, by the ‘repeated rows’ rule, the equation $\det(A) = 0$ must be true for those specific x, y values. What does this mean about the polynomial $y = f(x)$?

What about if you plug in $(x, y) = (1, 1)$ or $(3, 5)$? Why (in terms of determinants) must the equation $y = f(x)$ be satisfied by these points?

(c) Try to generalize: how could you use a determinant to make a cubic polynomial that passes through 4 given points? (It should require a 5×5 determinant.)

(6) Find a formula of the form $x = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$ for a matrix solution of the quadratic equation $ax^2 + bx + c = 0$. Here c denotes $\begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$ and 0 denotes $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

(Hint: First show how the square root of any number D can be obtained using a matrix of the form $\begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$, where it looks different depending on whether D is positive or negative. Then use the quadratic formula.)

(7) Let $A(t) = b_1 \cos(\omega t) + b_2 \sin(\omega t)$ be the ambient temperature, which varies sinusoidally. We suppose that $A(t)$ is known — that is, the values of $b_1, b_2,$ and ω have been measured. Newton’s Law of Cooling states that the temperature function $y(t)$ satisfies

$$y' = -k(y - A(t))$$

with k a (known) positive constant. It turns out that the “steady-state” solution (which y always approaches in the limit as t increases) is of the form

$$y(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t).$$

Use Newton’s Law of Cooling to find linear relations between the b_i and the c_i. Write the linear relations as a system of equations with kb_i on the right side. Then use an inverse matrix to find a formula for the steady-state solution.

(8) Let

$$f(t) = x_1 \sin(t) + x_2 \cos(t) + x_3 t \sin(t) + x_4 t \cos(t)$$

and

$$f'(t) = y_1 \sin(t) + y_2 \cos(t) + y_3 t \sin(t) + y_4 t \cos(t),$$

where the x_i and y_i are coefficients. Find a matrix A expressing \vec{y} as a linear transformation $T(\vec{x})$. Also answer the question: What is the significance of A^2 and A^3?