Name \qquad Student ID \# \qquad

HONOR STATEMENT
"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	10	
2	10	
3	10	
4	8	
5	12	
Total	50	

- Pace yourself. You have 50 minutes to complete the exam.
- Do not write within 1 cm of the edges of each page as these exams will be scanned.
- If you need more space, you may use the back of the page but be sure to clearly indicate that you have done so.
- Unless otherwise indicated, show all your work and justify your answers.
- You may use the Texas Instruments TI-30X IIS calculator and a 8.5×11-inch double-sided sheet of handwritten notes. All other electronic devices (including graphing and programmable calculators and calculators with calculus functions) are not permitted.
- The use of headphones or earbuds during the exam is not permitted.
- You are not allowed to use your phone for any reason during this exam. Turn your phone off and put it away for the duration of the exam.
- Raise your hand if you have any questions.

1. (a) (6 points) Find the general solution of the differential equation:

$$
y^{\prime \prime}-10 y^{\prime}+29 y=0
$$

(b) (4 points) Find the unique solution that satisfies the initial conditions:

$$
y(0)=\frac{5}{2}, \quad y^{\prime}(0)=\frac{1}{2}
$$

2. (a) (4 points) Find a particular solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=5 \sin (2 t)
$$

(b) (4 points) Find a particular solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=3 e^{t}-e^{-t}
$$

(c) (2 points) Give the general solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=5 \sin (2 t)+3 e^{t}-e^{-t}
$$

3. (a) (6 points) A spring-mass system has the following equation of motion:

$$
u(t)=-4 \cos (5 t)+4 \sin (5 t), \quad t \geq 0
$$

i. Rewrite $u(t)$ in the form $R \cos (\omega t-\varphi)$.
ii. Find the first time the mass passes through its equilibrium position.
(b) (4 points) A spring-mass system with external forcing function having the equation

$$
3 u^{\prime \prime}+k u=7 \cos (4 t)
$$

experiences resonance. Find the value of k and briefly explain the main characteristics the resulting motion (max two sentences).
4. (8 points) Find a second order differential equation whose general solution is

$$
y=c_{1} e^{3 t}+c_{2} t e^{3 t}+e^{-2 t}+t^{2}-3
$$

5. A certain spring is known to stretch 0.06 m beyond its natural length when a force of 0.54 N is applied to it. An unknown mass m is attached to this spring along with a damping device with constant $\gamma=6 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}$. The mass is pushed up 0.04 m and released from rest. The resulting motion is observed to oscillate with decreasing amplitude and a quasi-period of $T=4 \pi / 3 \mathrm{sec}$. Use the convention that the downward direction is positive.
(a) (8 points) Find the value of m. (Hint: What is the quasi-frequency?)
(b) (4 points) Write down the initial value problem for the above spring-mass system (do not solve).
