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Exercise 1. (5 points)

� Find the solution to the initial value problem

y′′ − y = 0, y(0) = 5, y′(0) = −3

� Find the minimal value of the solution.

Key:

� The differential equation is homogeneous with constant coefficients. Let’s take the char-
acteristic equation:

r2 − 1 = 0

2 real roots: r = ±1. The general solution is

y(t) = c1e
t + c2e

−t

Initial conditions: y(0) = 5, therefore c1 + c2 = 5.

y′(0) = −3, therefore c1 − c2 = −3.

By adding the 2 equations

2c1 = 5− 3 = 2 =⇒ c1 = 1

Hence c2 = 5− 1 = 4.

The solution to the initial value problem is y(t) = et + 4e−t

� to find the minimum, let’s find where the derivative is 0. y′(t) = et − 4e−t = 0,

et = 4e−t

Divide both sides by e−t,
e2t = 4

2t = ln(4)

There is a unique value t for which the derivative is 0:

t =
ln(4)

2
= ln(2)

At t = ln(2), y(ln(2)) = eln(2) + 4e− ln(2) = 2 + 4
2

= 4.

Let’s use the second derivative test to check whether the solution has a minimum at
t = ln(2):

The differential equation is equivalent to y′′ = y. At t = ln(2), y′′(ln(2)) = y(ln(2)) =
4 > 0. By the second derivative test, the function has a minimum at t = ln(2) and the
minimal value is 4.
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Exercise 2. (5 points) Consider the initial value problem

y′′ + 2y′ + 5y = 0, y(0) = 2, y′(0) = α > 0

� Find the solution to the initial value problem.

� Find α such that y = 0 when x = 1.

Leave your answer using usual function in the form α = · · · . No numerical approximation
is required.

α = e−25Arctan17
ln(π)

is a valid format for your answer.

Key:

� The differential equation is homogeneous and has constant coefficients. Let’s take the
characteristic equation:

r2 + 2r + 5 = 0

r = −1± 2i

The general solution is
y(t) = c1e

−t cos(2t) + c2e
−t sin(2t)

Initial conditions: y(0) = 2 = c1.

y′(0) = −2 + 2c2 = α.

c2 = α+2
2
.

The solution to the initial value problem is y(t) = 2e−t cos 2t+
(
α+2
2

)
e−t sin 2t

� y(1) = 0 = 2e−1 cos(2) +
(
α+2
2

)
e−1 sin(2)

α + 2

2
= −cos(2)

sin(2)
= − cot(2)

α = −2 cot(2)− 2
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Exercise 3. (5 points) Given the differential equation

y′′ + 2y′ + y = xe−x

� Make a valid guess for the particular solution.

� Find the general solution

Key:

� The differential equation is non-homogeneous with constant coefficients.

Let’s find the homogeneous part of the solution to determine if we need to multiply our
guess by x.

Characteristic equation:
r2 + 2r + 1 = 0

r = −1 is a repeated root of the characteristic equation.

The general solution for the corresponding homogeneous equation is

yh = c1e
−x + c2xe

−x

g(x) = xe−x is the product of a polynomial of degree 1 with an exponential function. The
standard guess is

yp = (Ax+B)e−x

Since (-1) is a repeated root of the characteristic equation, or since Ae−x and Bxe−x are
both solutions to the corresponding homogeneous equation, we need to multiply our guess
by x2.

Valid guess: yp = (Ax+B)x2e−x

�

yp = (Ax3 +Bx2)e−x

y′p = (3Ax2 + 2Bx)e−x − (Ax3 +Bx2)e−x

=
(
−Ax3 + (3A−B)x2 + 2Bx

)
e−x

y′′p = (−3Ax2 + 2(3A−B)x+ 2B)e−x − (−Ax3 + (3A−B)x2 + 2Bx)e−x

=
(
Ax3 + (−6A+B)x2 + (6A− 4B)x+ 2B

)
e−x

Plug in the differential equation:(
Ax3 + (−6A+B)x2 + (6A− 4B)x+ 2B

)
e−x + 2

(
−Ax3 + (3A−B)x2 + 2Bx

)
e−x

+(Ax3 +Bx2)e−x = xe−x(
(A− 2A+ A)x3 + (−6A+B + 6A− 2B +B)x2 + (6A− 4B + 4B)x+ 2B

)
e−x = xe−x

((6A)x+ 2B) e−x = xe−x

Identify the coefficients:
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– Coefficient of xe−x 6A = 1, A = 1
6
.

– Coefficient of e−x, 2B = 0, B = 0.

The particular solution is

yp =
x3

6
e−x

and the general solution is y = c1e
−x + c2xe

−x + x3

6
e−x
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Exercise 4. (5 points) Make a valid guess for a particular solution if the method of undeter-
mined coefficient is to be used:

y′′ + 4y = e−2x + x2 + sin 3x+ 5xe2x + x2 cos 2x− 3xe2x sin 2x

Key: Let’s find the solution to the corresponding homogeneous equation in order to deter-
mine which term(s) needs to be multiplied by x.

Characteristic equation:
r2 + 4 = 0

r = ±2i

The general solution to the corresponding homogeneous equation is

yh = c1 cos(2x) + c2 sin(2x)

Let’s max a guess for the particular solution:

yp = Ae−2x + (Bx2 + Cx+D) + E sin(3x) + F cos(3x) + (Gx+H)e2x

+(Ix2 + Jx+K)x cos(2x) + (Lx2 +Mx+N)x sin(2x)

+(Px+Q)e2x sin(2x) + (Rx+ S)e2x cos(2x)
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Exercise 5. (5 points) A spring with a mass of 2 kg has a damping constant 8 Ns/m (Newton
* Second/Meter). A force of 3 N is required to stretch the spring 0.5 m beyond its natural
length.

The spring is initially stretched 1 m beyond its natural length and released with no initial
velocity.

� Find the position u(t) as a function of the time.

� Find the mass that needs to be attached to the spring to produce critical damping.

Key:

� Let’s find the spring constant:

u = 0.5 m

F = 3 N

Fspring = Ku

When F is 3 N, and the spring is stretched 0.5 m, the spring is at an equilibrium.
Therefore, F + Fspring = 0.

3 = 0.5K, =⇒ K = 6 N/m

Let’s find u

Newton Law:
mu′′ = −ku− 8u′, u(0) = 1, u′(0) = 0

2u′′ + 8u′ + 6u = 0

u′′ + 4u′ + 3u = 0

Characteristic equation:
r2 + 4r + 3 = 0

r = −3, or, r = −1

General solution:
u(t) = c1e

−3t + c2e
−t

Initial conditions:
u(0) = 1 = c1 + c2

u′(0) = 0 = −3c1 − c2
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Adding the previous 2 equations,
−2c1 = 1

c1 = −1

2
, c2 =

3

2

the position u(t) is u(t) = −e−3t

2
+ 3e−t

2

� Newton law:
mu′′ + 8u′ + 6u = 0

The system is critically damped if the characteristic equation has a repeated root,

i.e. if the discriminant is 0.

Characteristic equation:
mr2 + 8r + 6 = 0

discriminant = b2 − 4ac = 0
82 − 24m = 0

The mass for a critically damped system is m = 8
3
kg
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