MATH 207G: MIDTERM 2

Name:

Please do not start working until given the indication. You have 50 minutes for the exam, which has 5 problems. There is an extra page at the end for scratch work if necessary. Good luck!

Q1 (10 points)
(a) Find the general solution to $y^{\prime \prime}+2 y^{\prime}+y=0$.
(b) Write down a linear, homogenenous 2 nd order differential equation with constant coefficients that has $y(t)=C_{1} \cos 4 t+C_{2} \sin 4 t$ as its general solution.
(c) Find the real part of the complex function $f(t)=e^{(2+3 i) t}$.

Q2 (10 points)
Solve the initial value problem

$$
y^{\prime \prime}-y=\cos 2 t, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Q3 (10 points)
(a) A 1 kg mass is attached to a spring. When pushed, the following motion is observed (here $y(t)$ indicates displacement in meters):

(i) What is the spring constant k ?
(ii) What is the (exact) initial velocity?
(b) A different mass-spring system is subjected to an oscillating external force, producing the following motion:

Write down a possible equation for $y(t)$ from the graph. You don't have to get it exactly right, and there is more than one possible answer.

$$
y(t)=
$$

Q4 (10 points)
(a) Solve the initial value problem.

$$
y^{\prime \prime}+\alpha^{2} y=1, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where $\alpha>0$ is a constant. Your solution $y(t)$ will involve the symbol α. (Hint: this is an inhomogeneous equation)
(b) Find $\lim _{\alpha \rightarrow 0} y(t)$, where $y(t)$ is your solution from part (a).

Q5 (10 points)
A block of mass m is attached to a spring with spring constant $k=1 \mathrm{~kg} / \mathrm{s}^{2}$ and damping coefficient $\gamma=4 \mathrm{~kg} / \mathrm{s}$.
(a) For what range of values of m will the system exhibit oscillations with decaying amplitude?
(b) Interestingly, there is one particular value of m that will cause the system to oscillate with a larger quasifrequency ω than any other value of m. Find this value of m.

