MIDTERM 2 SOLUTIONS

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln \left(\frac{\pi}{3}\right)$ or $5 \sqrt{3}$ or $e^{2.5}$).
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 5 pages, plus a cover sheet. Please make sure that your exam is complete.

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\cos \alpha-\cos \beta & =-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\cos \alpha+\cos \beta & =2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
\sin \alpha-\sin \beta & =2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\sin \alpha+\sin \beta & =2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
\end{aligned}
$$

Problem	Possible	Score
1	12	
2	10	
3	7	
4	14	
5	12	
Total	55	

Problem 1. (12 points)
(a) (9 points) Solve the following initial value problem.

$$
y^{\prime \prime}+2 y^{\prime}+5 y=5 \cos t, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(b) (3 points) Identify the transient and the steady state components of your answer.

Solution. $r^{2}+2 r+5=0 \Rightarrow r=-1 \pm 2 i$, homogeneous general solution:

$$
y(t)=C_{1} e^{-t} \cos (2 t)+C_{2} e^{-t} \sin (2 t)
$$

Undetermined coefficients: plug in $Y(t)=A \cos (t)+B \sin (t)$, then

$$
Y^{\prime \prime}+2 Y^{\prime}+5 Y=(4 A+2 B) \cos (t)+(4 B-2 A) \sin (t)
$$

set equal to $5 \cos (t)$ and solve $A=1, B=\frac{1}{2}$.
General solution to the inhomogeneous equation:

$$
y(t)=C_{1} e^{-t} \cos (2 t)+C_{2} e^{-t} \sin (2 t)+\cos (t)+\frac{1}{2} \sin (t)
$$

Set $y(0)=1$ to find $C_{1}=0$, and $y^{\prime}(0)=0$ to find $C_{2}=-\frac{1}{4}$, so

$$
y(t)=-\frac{1}{4} e^{-t} \sin (2 t)+\cos (t)+\frac{1}{2} \sin (t)
$$

Transient part: $-\frac{1}{4} e^{-t} \sin (2 t) \quad$ Steady state: $\cos (t)+\frac{1}{2} \sin (t)$

Problem 2. (10 points) Solve the following initial value problem:

$$
y^{\prime \prime}+25 y=\sin (5 t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Solution. $r^{2}+25=0 \Rightarrow r= \pm 5 i$, so homogeneous general solution:

$$
y(t)=C_{1} \cos (5 t)+C_{2} \sin (5 t)
$$

Driving force is part of homogeneous solution, so for undetermined coefficients try

$$
Y(t)=A t \cos (5 t)+B t \sin (5 t)
$$

Then

$$
Y^{\prime \prime}+25 Y=-10 A \sin (5 t)+10 B \cos (5 t)
$$

Set equal to $\sin (5 t)$ to get $A=-\frac{1}{10}, B=0$. So general solution to inhomogeneous equation is:

$$
y(t)=C_{1} \cos (5 t)+C_{2} \sin (5 t)-\frac{1}{10} t \cos (5 t)
$$

Set $y(0)=0$ to find $C_{1}=0$, and $y^{\prime}(0)=0$ to find $C_{2}=\frac{1}{50}$. Final answer:

$$
y(t)=\frac{1}{50} \sin (5 t)-\frac{1}{10} t \cos (5 t)
$$

Problem 3. (7 points) A spring is observed to stretch $\frac{1}{2}$ meter when a force of 3 newtons is applied to it. A viscous damper is observed to yield a resistance of 2 newtons when it is moved at a velocity of 1 meter/second.
A mass of 2 kg is hung from the spring and attached to the viscous damper. It is then pulled $\frac{1}{2}$ meter below its rest position and released with 0 initial velocity.
Write down the differential equation and initial conditions for $u(t)$, the position of the mass at time t relative to its rest position, where $u>0$ means the mass is above the rest position. Do not solve the equation. (And yes, this problem is really short.)
Solution. In meter-kilogram-seconds units, $m=2, k=3 /(1 / 2)=6, \gamma=2$, so

$$
2 u^{\prime \prime}+2 u^{\prime}+6 u=0, \quad u(0)=-\frac{1}{2}, \quad u^{\prime}(0)=0
$$

Problem 4. (14 points) Consider the initial value problem

$$
u^{\prime \prime}+2 u^{\prime}+\frac{5}{4} u=0, \quad u(0)=2, \quad u^{\prime}(0)=1
$$

(a) (5 points) Solve the initial value problem.

$$
u(t)=e^{-t}\left(2 \cos \left(\frac{1}{2} t\right)+6 \sin \left(\frac{1}{2} t\right)\right)
$$

(b) (6 points) Express the answer in the form $u(t)=A e^{\rho t} \cos (\omega t-\phi)$, where $A>0$.

$$
A=\sqrt{40} \quad \rho=-1 \quad \omega=\frac{1}{2} \quad \phi=\tan ^{-1}(3)
$$

(c) (3 points) Find the first time $t>0$ at which $u(t)=0$.

$$
t=2 \tan ^{-1}(3)+\pi
$$

Solution. (a). $r^{2}+2 r+\frac{5}{4}=0 \Rightarrow r=-1 \pm \frac{1}{2} i$, homogeneous general solution:

$$
u(t)=C_{1} e^{-t} \cos \left(\frac{1}{2} t\right)+C_{2} e^{-t} \sin \left(\frac{1}{2} t\right)
$$

Set $u(0)=2$ to get $C_{1}=2$ and $u^{\prime}(0)=1$ to get $C_{2}=6$.
(b). Need write $(2,6)=(A \cos (\phi), A \sin (\phi)) . A=\sqrt{2^{2}+6^{2}}$, and since the point $(2,6)$ is in the first quadrant, $\phi=\tan ^{-1}(3)$.
(c). Need find the first $t>0$ so that $\cos \left(\frac{1}{2} t-\tan ^{-1}(3)\right)=0$. Since $0<\tan ^{-1}(3)<\frac{\pi}{2}$, this will occur when $\frac{1}{2} t-\tan ^{-1}(3)=\frac{\pi}{2}$.

Problem 5. (12 points) Each of the 6 differential equations below has a solution that is plotted in one of the graphs. Match each of the differential equations to its solution. (Note: only 6 of the graphs will correspond to an equation.)

(a)

(d)

(g)

(b)

(e)

(c)

(f)

Differential Equation	Graph
$y^{\prime \prime}+4 y=\sin (t)$	f
$y^{\prime \prime}+4 y=\cos (2 t)$	d
$y^{\prime \prime}+4 y=0$	a
$y^{\prime \prime}+5 y^{\prime}+4 y=0$	c
$y^{\prime \prime}+5 y^{\prime}+4 y=\cos (2 t)$	e
$y^{\prime \prime}+2 y^{\prime}+5 y=0$	g

