MIDTERM 2

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln \left(\frac{\pi}{3}\right)$ or $5 \sqrt{3}$ or $e^{2.5}$).
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 5 pages, plus a cover sheet. Please make sure that your exam is complete.

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\cos \alpha-\cos \beta & =-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\cos \alpha+\cos \beta & =2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
\sin \alpha-\sin \beta & =2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\sin \alpha+\sin \beta & =2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
\end{aligned}
$$

Problem	Possible	Score
1	12	
2	10	
3	7	
4	14	
5	12	
Total	55	

Problem 1. (12 points)

(a) (9 points) Solve the following initial value problem.

$$
y^{\prime \prime}+2 y^{\prime}+5 y=5 \cos t, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(b) (3 points) Identify the transient and the steady state components of your answer.

Problem 2. (10 points) Solve the following initial value problem:

$$
y^{\prime \prime}+25 y=\sin (5 t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Problem 3. (7 points) A spring is observed to stretch $\frac{1}{2}$ meter when a force of 3 newtons is applied to it. A viscous damper is observed to yield a resistance of 2 newtons when it is moved at a velocity of 1 meter/second.
A mass of 2 kg is hung from the spring and attached to the viscous damper. It is then pulled $\frac{1}{2}$ meter below its rest position and released with 0 initial velocity.
Write down the differential equation and initial conditions for $u(t)$, the position of the mass at time t relative to its rest position, where $u>0$ means the mass is above the rest position. Do not solve the equation. (And yes, this problem is really short.)

Problem 4. (14 points) Consider the initial value problem

$$
u^{\prime \prime}+2 u^{\prime}+\frac{5}{4} u=0, \quad u(0)=2, \quad u^{\prime}(0)=1
$$

(a) (5 points) Solve the initial value problem.

$$
u(t)=
$$

(b) (6 points) Express the answer in the form $u(t)=A e^{\rho t} \cos (\omega t-\phi)$, where $A>0$.
$A=$
$\rho=$
$\omega=$
$\phi=$
(c) (3 points) Find the first time $t>0$ at which $u(t)=0$.

$$
t=
$$

Problem 5. (12 points) Each of the 6 differential equations below has a solution that is plotted in one of the graphs. Match each of the differential equations to its solution. (Note: only 6 of the graphs will correspond to an equation.)

(a)

(d)

(g)

(b)

(e)

(c)

(f)

Differential Equation	Graph
$y^{\prime \prime}+4 y=\sin (t)$	
$y^{\prime \prime}+4 y=\cos (2 t)$	
$y^{\prime \prime}+4 y=0$	
$y^{\prime \prime}+5 y^{\prime}+4 y=0$	
$y^{\prime \prime}+5 y^{\prime}+4 y=\cos (2 t)$	
$y^{\prime \prime}+2 y^{\prime}+5 y=0$	

Submitted by Name:
Student number:
on February 23, 2022.

