Test \#2 (100 points total)

Instructions: Please read the following instructions before you start the test:

- Show all work. Answers without sufficient work may not get full credit. Give all answers in exact form. Calculators are not allowed.
- Be sure to either erase or scratch out any work that you do not want graded-two answers for a problem will nullify your solution, even if one of them is correct.
- If you need additional space, you may use backs of pages.
- There is a table of trig formulas and integrals on the last page.
- You are allowed one 11 " by 8 " sheet of handwritten notes. Writing on both sides of the paper is allowed.

1.	$(60$ points $)$	
2.	$(30$ points $)$	
3.	$(10$ points $)$	
TOTAL	$(100$ points $)$	

(1) (60 points) Solve each of the following initial value problems.
(a) (15 points) $y^{\prime \prime}-4 y=0, y(0)=1, y^{\prime}(0)=0$.
(b) (15 points) $y^{\prime \prime}-4 y=e^{2 t},, y(0)=1, y^{\prime}(0)=0$.
(c) (15 points) $2 y^{\prime \prime}+4 y^{\prime}+10 y=0, y(0)=1, y^{\prime}(0)=1$.
(d) (15 points) $2 y^{\prime \prime}+4 y^{\prime}+10 y=12 \cos (3 t), y(0)=0, y^{\prime}(0)=0$.
(2) (30 points) A simple pendulum of mass m and length L is hinged at a point P (see figure). If the wheel at the left of the figure rotates at a rate of ω radians/second it forces the point P to move periodically back and forth.
For small angle $\theta($ where $\sin (\theta) \approx \theta)$ the angle θ satisfies the differential equation

$$
m L \frac{d^{2} \theta}{d t^{2}}+m g \theta=A \sin (\omega t) .
$$

Assume for simplicity that
$m=1 \mathrm{~kg}, L=10$ meter, $A=20$ Newtons,
$g=10$ meter $/ \mathrm{sec}^{2}$, and $\omega=1 \mathrm{rad} / \mathrm{sec}$.
Find the solution satisfying the initial conditions $\theta(0)=\dot{\theta}(0)=0$.
Be sure to clearly show the general solution to the ODE and how you got it.
(3) (10 points) Suppose that you are designing a new shock absorber for a small automobile. The automobile has a mass of 800 kilograms and the combined effect of the springs in the suspension system is that of a spring constant of 16000 Newtons/meter.
(a) (5 points) Before a damping mechanism is installed in the automobile, when it hits a bump it will bounce up and down. What is the period of the oscillations when it hits a bump?
(b) (5 points) Your job is to design a damping mechanism which eliminates oscillations when the automobile hits a bump. What is the minimum value of the effective damping constant that you need?

Selected Formulas

Trigonometry

$$
\begin{aligned}
& \sin x=\cos \left(\frac{\pi}{2}-x\right) ; \cos x=\sin \left(\frac{\pi}{2}-x\right) \\
& \sin (x+\pi)=-\sin x ; \cos (x+\pi)=-\cos x \\
& \sin ^{2} x+\cos ^{2} x=1 ; \tan ^{2} x+1=\sec ^{2} x ; 1+\cot ^{2} x=\csc ^{2} x \\
& \sin (x+y)=\sin x \cos y+\cos x \sin y \\
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
& \sin ^{2} x=\frac{1-\cos (2 x)}{2} ; \cos ^{2} x=\frac{1+\cos (2 x)}{2} ; 2 \sin (x) \cos (x)=\sin (2 x) \\
& \cos x-\cos y=2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{y-x}{2}\right) \\
& \sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)
\end{aligned}
$$

Calculus

Integration by parts: $\int u d v=u v-\int v d u$;
Standard integrals:

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C(n \neq-1) ; \int \frac{d x}{x}=\ln |x|+C ; \int e^{x} d x=e^{x}+C \\
& \int \sin x d x=-\cos x+C ; \int \cos x d x=\sin x+C ; \int \tan x d x=-\ln |\cos x|+C \\
& \int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C ; \int \frac{x d x}{\sqrt{1-x^{2}}}=-\sqrt{1-x^{2}}+C \\
& \int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C ; \int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+C \\
& \int \frac{x d x}{1+x^{2}}=\frac{1}{2} \ln \left(1+x^{2}\right)+C
\end{aligned}
$$

