Spring 2018 MATH 307 Midterm 1
80 pts total

Name: Heather

Instruction:

- Nothing but writing utensils and a double side 4 in $\times 6$ in notecard are allowed.

1. Consider the differential equation

$$
\frac{d y}{d t}+y=-t+e^{-t}
$$

[a] (pts) Is this differential equation linear or nonlinear (no need to explain)?
linear
[b] (17pts) Find the general solution $y(t)$ (Show all steps to get full credit).
It's linear so we can use method of integrating factors

$$
\begin{aligned}
& I(t)=e^{\int 1 d t}=e^{t} \\
& e^{t}\left(y^{\prime}+y\right)=e^{t}\left(-t+e^{-t}\right)
\end{aligned}
$$

good to $\leadsto 11$
check it \checkmark

$$
\begin{aligned}
& \frac{d\left(e^{t} y\right)}{d t}=-t e^{t}+1 \\
& \int d\left(e^{t} y\right)=\int\left(-t e^{t}+1\right) d t \\
& e^{t} y=\left(-t e^{t}+\int e^{t} d t\right)+t \\
& e^{t} y=-t e^{t}+e^{t}+t+c \\
& y=-t+1+\frac{t}{e^{t}}+\frac{c}{e^{t}} \\
& y=\frac{t+c}{e^{t}}+1-t
\end{aligned}
$$

1. (Continued)
[c] (3pts) Find $y(t)$ satisfying the initial value $y(0)=-2$. (Show work to get full credit)

$$
\begin{aligned}
-2 & =y(0)=c+1 \\
& \Rightarrow c=-3 \\
y & =\frac{t-3}{e^{t}}+1-t
\end{aligned}
$$

[d] (3pts) For the solution obtained in part [c], what is

$$
\lim _{t \rightarrow \infty} y(t)=?
$$

(Explain your reasoning to get full credit.)

$$
\lim _{t \rightarrow \infty} \underbrace{\frac{t-3}{e^{t}}}_{\substack{e^{t}}}+1-\underbrace{t}_{\downarrow}=-\infty
$$

1. (Continued)

[e] (4pts) Which one of the two below is the correct direction field to the differential equation in part [a]? Draw on that direction field the solution curve satisfying the initial condition $y(0)=-2$. (No need to explain.)

2 [pts] Write down (no need to show work) a differential equation with the following set of equilibrium solutions and the corresponding stabilities:
$\longrightarrow y_{1}=-3$ (unstable), $y_{2}=0$ (semistable), $y_{3}=2$ (stable).
Answer: $\frac{d y}{d x}=-(y+3) y^{2}(y-2)$
From these info we know direction field looks like:

so $\frac{d y}{d t}=f(y)$ looks like

4. [7pts] Consider the differential equation $\frac{d y}{d x}=f(y)$ where $f(y)$ is sketched in the figure below. Determine the equilibrium solutions, and for each equilibrium solution, classify whether it is stable, unstable, or semistable. (Briefly explain your reasoning to get full credit.)
$f(y)$ is

$$
f(y)=0 \quad \text { when } \quad y=0,4,6
$$

So equilibrium soln are $y_{1}=0$,
$y_{2}=4$,
(stable)
$y_{3}=6$
(unstable)

Direction field looks like

4. Genevieve's parents will start saving for her college education as soon as she is born by putting $\$ 40,000$ in an index fund that is expected to have a rate of return of about 5% per year. Let $P(t)$ be the amount of money, in dollars, in Genevieve's college fund, with t measured in years. So $P(0)=\$ 40,000$.
[a] (3pts) Write down a differential equation for $P(t)$ (no need to show work):

$$
\frac{d P}{d t}=0,0 \mathrm{SP}
$$

[b] (4pts) Write down the solution to the above initial value problem (no need to show work).

$$
P=40000 e^{0.05 t}
$$

[c] (12pts) To make the numbers easy to calculate, let's suppose that Genevieve will start college at age 20. Use Euler's method with step size of 10 years to get a rough estimate of the amount of money, $P(20)$, in her college fund when she turns 20. (Show all steps to get full credit.)

$$
\begin{aligned}
P(0) & =40000 \\
P^{\prime}(0) & =0.05 P(0)=(0.05)(40000)=2000 \\
P(10) & \approx P(0)+(10) P^{\prime}(0) \\
& =40000+(10)(2000)=60000 \\
P^{\prime}(10) & =0.05 P(10) \\
& \approx(0.05)(60000)=3000 \\
P(20) & \approx P(10)+(10) P^{\prime}(10) \\
& \approx 60000+(10)(3000) \\
& =90000
\end{aligned}
$$

$5[\mathrm{a}]$. (5pts) Let $P(t)$ be the size of a population of fish, with t measured in days. The rate of population increase is proportional to the size of the population. The population increases by 2% per day. Furthermore, 1000 fish are harvested each day. Write down a differential equation for the number of fish in the population. (No need to show work.)

$$
\frac{d P}{d t}=0.02 P-1000
$$

$5[\mathrm{~b}]$. (7 pts) Max is buying a home and he plans to spend $\$ 2000$ per month to pay off a 30-year mortgage. Suppose that the interest rate is 4% compounded continuously. Let $P(t)$ be the amount, in dollars, owed at time t, measured in years. Write down a differential equation for $P(t)$. (No need to show work.)

$$
\frac{d P}{d t}=0.04 P-(2000)(12)
$$

6. A tank holds 2000 L of water in which 400 g of salt has been dissolved. Saltwater with a concentration of $2 \mathrm{~g} / \mathrm{L}$ is pumped in at a rate of $40 \mathrm{~L} / \mathrm{min}$. The well mixed salt water solution is pumped out at a rate of $50 \mathrm{~L} / \mathrm{min}$. (No need to show work for this problem.)
[a] (2pts) Before the tank becomes empty, what is the total volume, in liters, of water in the tank at time t (measured in minutes)?

$$
2000-10 t
$$

[b] (5pts) Let $S(t)$ be the mass (i.e. number of grams) of salt in the tank at time t. Write down a differential equation for $S(t)$.

$$
\begin{aligned}
& \frac{d S}{d t}=(2)(40)-\left(\frac{s}{2000-10 t}\right)(50) \\
& \frac{d s}{d t}=80-\frac{5 s}{200-t}
\end{aligned}
$$

