Name: \qquad
Mathematics 307 L
University of Washington
December 10, 2019

FINAL EXAM SOLUTIONS

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln \left(\frac{\pi}{3}\right)$ or $5 \sqrt{3}$ or $e^{2.5}$).
- Simplify $e^{a \ln (x)}=x^{a}$ for $x>0$.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 9 pages of problems (in addition to the cover sheet and page of formulas). Please make sure that your exam is complete.
- You have 110 minutes to complete the exam.
- HAVE FUN!

Problem	Possible	Score
1	9	
2	9	
3	14	
4	14	
5	21	
6	16	
7	9	
8	8	
Total	100	

Problem 1. (9 points) Consider the differential equation

$$
\left(1+t^{2}\right) \frac{d y}{d t}+4 t y=1
$$

(a) (2 points) Circle your answer
(i) Is this a linear differential equation?
(ii) Is this a separable differential equation?
(b) (7 points) Find the general solution, and write your final answer here:

$$
y(t)=\frac{t+\frac{1}{3} t^{3}+C}{\left(1+t^{2}\right)^{2}}
$$

Solution. Rewrite as

$$
\begin{gathered}
\frac{d y}{d t}+\frac{4 t}{1+t^{2}} y=\frac{1}{1+t^{2}} \\
\mu=e^{\int \frac{4 t}{1+t^{2}} d t}=e^{2 \log \left(1+t^{2}\right)}=\left(1+t^{2}\right)^{2}
\end{gathered}
$$

Multiply both sides by μ and simplify the left hand side:

$$
\frac{d}{d t}\left(\left(1+t^{2}\right)^{2} y\right)=1+t^{2}
$$

Integrate with indeterminate constant on the right

$$
\left(1+t^{2}\right)^{2} y=t+\frac{1}{3} t^{3}+C
$$

Solve for y to get the above answer.

Problem 2. (9 points) A 50 gallon tank initially holds 20 gallons of water that has 4 pounds of chemical Q dissolved in it. Clean water (which does not contain any Q) flows into the tank at the rate of 5 gallons per minute. The mixture flows out of the tank at the rate of 3 gallons per minute. Write the initial value problem for the amount of Q in the tank:

$$
\frac{d Q}{d t}=-\frac{3 Q}{20+2 t} \quad Q(0)=4
$$

Solve for $Q(t)$, and write the answer here:

$$
Q(t)=4 \cdot(20)^{\frac{3}{2}}(20+2 t)^{-\frac{3}{2}}
$$

For the first part, use that $V(t)=20+2 t$.
Equation is separable (as well as linear, you can use either method).

$$
\begin{aligned}
\frac{d Q}{Q} & =-\frac{3}{20+2 t} d t \\
\ln |Q| & =-\frac{3}{2} \ln |20+2 t|+C
\end{aligned}
$$

Since both Q and $20+2 t$ are positive we can drop the $|\cdot|$ signs.

$$
\begin{aligned}
Q & =e^{-\frac{3}{2} \ln (20+2 t)+C} \\
& =e^{C} e^{-\frac{3}{2} \ln (20+2 t)} \\
& =C(20+2 t)^{-\frac{3}{2}}
\end{aligned}
$$

Set $t=0$ and $Q=4$ to find $C=4 \cdot(20)^{\frac{3}{2}}$

Problem 3. (14 points)

Write down a suitable form for $Y(t)$ which would allow you to use the method of undetermined coefficients to find a particular solution to the following equations. (DO NOT plug Y into the equation or try to find the coefficients.)
(a) (7 points) $\quad y^{\prime \prime}+4 y^{\prime}+5 y=3 t^{2} e^{-2 t}+t e^{-2 t} \cos (t)+\sin (t)+t+1$.

Roots of $r^{2}+4 r+5$ are $r=-2 \pm i$. This means the terms with $e^{-2 t} \cos (t)$ or $e^{-2 t} \sin (t)$ get multiplied by t. There are 4 different types of terms on the right, only one of which gets multiplied by t.

$$
\begin{aligned}
y_{p}(t)=\left(A_{0} t^{2}+A_{1} t+A_{0}\right) e^{-2 t}+e^{-2 t}\left(\left(B_{1} t^{2}+B_{0} t\right) \cos (t)+\left(C_{1} t^{2}+C_{0} t\right) \sin (t)\right) \\
+D \cos (t)+E \sin (t)+F_{1} t+F_{0}
\end{aligned}
$$

(b) (7 points) $\quad y^{\prime \prime}+2 y^{\prime}-3 y=3 t^{2} e^{-3 t}+t e^{t} \sin (2 t)+7 e^{t}+t+1$.

Roots of $r^{2}+2 r-3$ are $r=1,-3$. This means the terms with $e^{-3 t}$ or e^{t} get multiplied by t. There are 4 different types of terms on the right, two of which gets multiplied by t.

$$
\begin{aligned}
y_{p}(t)=\left(A_{2} t^{3}+A_{1} t^{2}+A_{0} t\right) e^{-3 t}+e^{t}\left(\left(B_{1} t+B_{0}\right) \cos (2 t)\right. & \left.+\left(C_{1} t+C_{0}\right) \sin (2 t)\right) \\
& +D t e^{t}+F_{1} t+F_{0}
\end{aligned}
$$

Problem 4. (14 points) Consider the initial value problem

$$
u^{\prime \prime}+u^{\prime}+\frac{5}{4} u=0, \quad u(0)=-2, \quad u^{\prime}(0)=-1 .
$$

(a) (7 points) Solve the initial value problem, using whichever method you prefer.

$$
u(t)=e^{-\frac{1}{2} t}(-2 \cos (t)-2 \sin (t))
$$

(b) (4 points) Express the answer in the form $u(t)=A e^{\rho t} \cos (\omega t-\phi)$, where $A>0$.

$$
A=2 \sqrt{2} \quad \rho=-\frac{1}{2} \quad \omega=1 \quad \phi=\frac{5 \pi}{4} \text { or }-\frac{3 \pi}{4}
$$

(c) (3 points) Find the first time $t>0$ at which $u(t)=0$.

$$
t=\frac{3 \pi}{4}
$$

The general solution is $y=e^{-\frac{1}{2} t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)$. Plug in initial conditions and solve to get $c_{1}=-2$ and $c_{2}=-2$.
$A=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{8}=2 \sqrt{2} . \tan \phi=\frac{-2}{-2}=1$. However, the point $(-2,-2)$ is in the third quadrant, so we take $\phi=\tan ^{-1}(1) \pm \pi$.
$u(t)=0$ when $\sin (t)=-\cos (t)$ so $\tan (t)=-1$. The first value of $t>0$ for which this happens is $t=\frac{3 \pi}{4}$.

Problem 5. (21 points) For each of the following functions $F(s)$, find $f(t)=\mathcal{L}^{-1}[F(s)]$. That is, find $f(t)$ for which the Laplace transform of f satisfies $\mathcal{L}[f(t)]=F(s)$.
For answers that involve Heaviside functions, express your answers in piece-wise form (i.e. give the formula for $f(t)$ on the different intervals).
Draw a box around each of your answers.
(a) (7 points) $\quad F(s)=\frac{1}{s-1}+\frac{e^{-3 s}}{s^{2}}$
$y(t)=e^{t}+u_{3}(t)(t-3)$, so in piecewise form

$$
y(t)= \begin{cases}e^{t}, & t \leq 3 \\ e^{t}+(t-3), & t>3\end{cases}
$$

(Parts (b) and (c) of this problem are on the next page.)
(b) (7 points) $\quad F(s)=\frac{1}{s\left(s^{2}+s+\frac{1}{2}\right)}$

Partial fractions:

$$
\begin{aligned}
\frac{1}{s\left(s^{2}+s+\frac{1}{2}\right)} & =\frac{2}{s}+\frac{-2 s-2}{s^{2}+s+\frac{1}{2}} \\
& =\frac{2}{s}-2 \frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}
\end{aligned}
$$

$$
y(t)=2-2 e^{-\frac{1}{2} t} \cos \left(\frac{1}{2} t\right)-2 e^{-\frac{1}{2} t} \sin \left(\frac{1}{2} t\right)
$$

(c) (7 points) $\quad F(s)=\left(1-e^{-2 s}\right)\left(\frac{1-s}{s^{2}}+\frac{s+1}{s^{2}+2 s+2}\right)$

Let $G(s)=\frac{1-s}{s^{2}}+\frac{s+1}{s^{2}+2 s+2}=\frac{1}{s^{2}}-\frac{1}{s}+\frac{s+1}{(s+1)^{2}+1}$
This is the Laplace transform of $g(t)=t-1+e^{-t} \cos (t)$.
Then $f(t)=g(t)-u_{2}(t) g(t-2)$. In piecewise form

$$
y(t)= \begin{cases}t-1+e^{-t} \cos (t), & t \leq 2 \\ t-1+e^{-t} \cos (t)-\left((t-2)-1+e^{-(t-2)} \cos (t-2)\right), & t>2\end{cases}
$$

Problem 6. (16 points) For the following problems find $Y(s)$, where $Y(s)=\mathcal{L}[y(t)]$ is the Laplace transform of the solution to the equation. (DO NOT solve the equation or find $y(t)$, just $Y(s)$. You do not need to apply partial fractions to simplify $Y(s)$.)
Draw a box around each of your answers.
(a) (8 points) $y^{\prime \prime}+4 y^{\prime}+3 y=f(t), \quad y(0)=1, \quad y^{\prime}(0)=0, \quad f(t)= \begin{cases}t, & 0 \leq t<1 \\ 0, & 1 \leq t<\infty\end{cases}$

Write $f(t)=\left(1-u_{1}(t)\right) t=t-u_{1}(t)(t-1)-u_{1}(t)$, so

$$
\mathcal{L}(f)=F(s)=\frac{1}{s^{2}}-e^{-t}\left(\frac{1}{s^{2}}-\frac{1}{s}\right)
$$

$$
\left(s^{2}+4 s+3\right) Y(s)=s+4+F(s)
$$

$$
Y(s)=\frac{s+4}{s^{2}+4 s+3}+\frac{1}{s^{2}+4 s+3}\left(\frac{1}{s^{2}}-e^{-t}\left(\frac{1}{s^{2}}-\frac{1}{s}\right)\right)
$$

(b) (8 points) $y^{\prime \prime}+6 y=f(t), \quad y(0)=1, \quad y^{\prime}(0)=2, \quad f(t)= \begin{cases}0, & 0 \leq t<\pi \\ \sin t, & \pi \leq t<2 \pi \\ 0, & 2 \pi \leq t<\infty\end{cases}$ $f(t)=\left(u_{\pi}(t)-u_{2 \pi}(t)\right) \sin t$.

So $\mathcal{L}(f)=F(s)=e^{-\pi s} \mathcal{L}\{\sin (t+\pi)\}-e^{-2 \pi s} \mathcal{L}\{\sin (t+2 \pi)\}$
Use that $\sin (t+\pi)=-\sin (t)$ and $\sin (t+2 \pi)=\sin (t)$ to find

$$
F(s)=-\left(e^{-\pi s}+e^{-2 \pi s}\right) \frac{\pi}{s^{2}+\pi^{2}}
$$

From the equation,

$$
\left(s^{2}+6\right) Y(s)=s+2+F(s)
$$

$$
Y(s)=\frac{s+2}{s^{2}+6}-\frac{\pi\left(e^{-\pi s}+e^{-2 \pi s}\right)}{\left(s^{2}+6\right)\left(s^{2}+\pi^{2}\right)}
$$

Problem 7. (9 points) Solve the following differential equation

$$
y^{\prime \prime}+25 y=1+3 \delta_{4}(t), \quad y(0)=1, \quad y^{\prime}(0)=1 .
$$

You may use Heaviside functions in your answer.

$$
y(t)=\frac{24}{25} \cos (5 t)+\frac{1}{5} \sin (5 t)+\frac{1}{25}+\frac{3}{5} u_{4}(t) \sin (5(t-4))
$$

$$
\begin{aligned}
& \left(s^{2}+25\right) Y(s)=s+1+\frac{1}{s}+3 e^{-4 t}, \text { so } \\
& \qquad Y(s)=\frac{s+1}{s^{2}+25}+\frac{1}{s\left(s^{2}+25\right)}+3 e^{-4 t} \frac{1}{s^{2}+25}
\end{aligned}
$$

Use partial fractions to write

$$
\frac{1}{s\left(s^{2}+25\right)}=\frac{1}{25}\left(\frac{1}{s}-\frac{s}{s^{2}+25}\right)
$$

so

$$
Y(s)=\frac{24}{25} \frac{s}{s^{2}+5^{2}}+\frac{1}{5} \frac{5}{s^{2}+25}+\frac{1}{25} \frac{1}{s}+\frac{3}{5} e^{-4 t} \frac{5}{s^{2}+25}
$$

so $y(t)=\frac{24}{25} \cos (5 t)+\frac{1}{5} \sin (5 t)+\frac{1}{25}+\frac{3}{5} u_{4}(t) \sin (5(t-4))$

Problem 8. (8 points) A mass of 1 kg is hanging on a spring of spring constant $k=4 \mathrm{~N} / \mathrm{m}$. The system is at rest at its equilibrium point at time $t=0$. There is no damping. You apply a downward force of 1 N to the mass for T seconds, after which you turn off the force, so that the solution is in a steady state for $t>T$. Find the amplitude of this steady state. (Your answer will be a function of T.)

$$
A=\frac{1}{4} \sqrt{(1-\cos (2 T))^{2}+\sin (2 T)^{2}}=\frac{1}{4} \sqrt{2-2 \cos (2 T)}
$$

The driving force is $f(t)=-\left(1-u_{T}(t)\right)$, so $\mathcal{L}\{f\}=F(s)=\frac{-1+e^{-T s}}{s}$.
The equation leads to

$$
\mathcal{L}\{y\}=Y(s)=\left(-1+e^{-T s}\right) \frac{1}{s\left(s^{2}+4\right)}
$$

Partial fractions

$$
\frac{1}{s\left(s^{2}+4\right)}=\frac{1}{4}\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right)=\mathcal{L}\left\{\frac{1}{4}-\frac{1}{4} \cos (2 t)\right\}
$$

Therefore

$$
y(t)=-\frac{1}{4}+\frac{1}{4} \cos (2 t)+u_{T}(t)\left(\frac{1}{4}-\frac{1}{4} \cos (2(t-T))\right)
$$

For $t>T$ we have

$$
y(t)=\frac{1}{4}(\cos (2 t)-\cos (2 t-2 T))
$$

To find the amplitude we expand

$$
\cos (2 t-2 T)=\cos (2 T) \cos (2 t)+\sin (2 T) \sin (2 t)
$$

to write, for $t>T$,

$$
y(t)=\frac{1-\cos (2 T)}{4} \cos (2 t)-\frac{\sin (2 T)}{4} \sin (2 t)
$$

and the amplitude is as given above.

