Name: \qquad
Mathematics 307 L
University of Washington
December 10, 2019

FINAL EXAM

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln \left(\frac{\pi}{3}\right)$ or $5 \sqrt{3}$ or $e^{2.5}$).
- Simplify $e^{a \ln (x)}=x^{a}$ for $x>0$.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 9 pages of problems (in addition to the cover sheet and page of formulas). Please make sure that your exam is complete.
- You have 110 minutes to complete the exam.
- HAVE FUN!

Problem	Possible	Score
1	9	
2	9	
3	14	
4	14	
5	21	
6	16	
7	9	
8	8	
Total	100	

Problem 1. (9 points) Consider the differential equation

$$
\left(1+t^{2}\right) \frac{d y}{d t}+4 t y=1
$$

(a) (2 points) Circle your answer
(i) Is this a linear differential equation?
YES
NO
(ii) Is this a separable differential equation?
YES
NO
(b) (7 points) Find the general solution, and write your final answer here:

$$
y(t)=
$$

Problem 2. (9 points) A 50 gallon tank initially holds 20 gallons of water that has 4 pounds of chemical Q dissolved in it. Clean water (which does not contain any Q) flows into the tank at the rate of 5 gallons per minute. The mixture flows out of the tank at the rate of 3 gallons per minute. Write the initial value problem for the amount of Q in the tank:

$$
\frac{d Q}{d t}=\quad Q(0)=
$$

Solve for $Q(t)$, and write the answer here:

$$
Q(t)=
$$

Problem 3. (14 points)

Write down a suitable form for $Y(t)$ which would allow you to use the method of undetermined coefficients to find a particular solution to the following equations. (DO NOT plug Y into the equation or try to find the coefficients.)

$$
\text { (a) (7 points) } \quad y^{\prime \prime}+4 y^{\prime}+5 y=3 t^{2} e^{-2 t}+t e^{-2 t} \cos (t)+\sin (t)+t+1 \text {. }
$$

(b) (7 points) $\quad y^{\prime \prime}+2 y^{\prime}-3 y=3 t^{2} e^{-3 t}+t e^{t} \sin (2 t)+7 e^{t}+t+1$.

Problem 4. (14 points) Consider the initial value problem

$$
u^{\prime \prime}+u^{\prime}+\frac{5}{4} u=0, \quad u(0)=-2, \quad u^{\prime}(0)=-1 .
$$

(a) (7 points) Solve the initial value problem, using whichever method you prefer.

$$
u(t)=
$$

(b) (4 points) Express the answer in the form $u(t)=A e^{\rho t} \cos (\omega t-\phi)$, where $A>0$.

$$
A=\quad \rho=\quad \omega=\quad \phi=
$$

(c) (3 points) Find the first time $t>0$ at which $u(t)=0$.
$t=$

Problem 5. (21 points) For each of the following functions $F(s)$, find $f(t)=\mathcal{L}^{-1}[F(s)]$. That is, find $f(t)$ for which the Laplace transform of f satisfies $\mathcal{L}[f(t)]=F(s)$.
For answers that involve Heaviside functions, express your answers in piece-wise form (i.e. give the formula for $f(t)$ on the different intervals).
Draw a box around each of your answers.
(a) (7 points) $\quad F(s)=\frac{1}{s-1}+\frac{e^{-3 s}}{s^{2}}$
(Parts (b) and (c) of this problem are on the next page.)
(b) (7 points) $\quad F(s)=\frac{1}{s\left(s^{2}+s+\frac{1}{2}\right)}$
(c) (7 points) $\quad F(s)=\left(1-e^{-2 s}\right)\left(\frac{1-s}{s^{2}}+\frac{s+1}{s^{2}+2 s+2}\right)$

Problem 6. (16 points) For the following problems find $Y(s)$, where $Y(s)=\mathcal{L}[y(t)]$ is the Laplace transform of the solution to the equation. (DO NOT solve the equation or find $y(t)$, just $Y(s)$. You do not need to apply partial fractions to simplify $Y(s)$.) Draw a box around each of your answers.
(a) (8 points) $\quad y^{\prime \prime}+4 y^{\prime}+3 y=f(t), \quad y(0)=1, \quad y^{\prime}(0)=0, \quad f(t)= \begin{cases}t, & 0 \leq t<1 \\ 0, & 1 \leq t<\infty\end{cases}$
(b) (8 points) $y^{\prime \prime}+6 y=f(t), \quad y(0)=1, \quad y^{\prime}(0)=2, \quad f(t)= \begin{cases}0, & 0 \leq t<\pi \\ \sin t, & \pi \leq t<2 \pi \\ 0, & 2 \pi \leq t<\infty\end{cases}$

Problem 7. (9 points) Solve the following differential equation

$$
y^{\prime \prime}+25 y=1+3 \delta_{4}(t), \quad y(0)=1, \quad y^{\prime}(0)=1 .
$$

You may use Heaviside functions in your answer.

$$
y(t)=
$$

Problem 8. (8 points) A mass of 1 kg is hanging on a spring of spring constant $k=4 \mathrm{~N} / \mathrm{m}$. The system is at rest at its equilibrium point at time $t=0$. There is no damping. You apply a downward force of 1 N to the mass for T seconds, after which you turn off the force, so that the solution is in a steady state for $t>T$. Find the amplitude of this steady state. (Your answer will be a function of T.)
$A=$

Submitted by Name: on December 10, 2019.

