\square
\square

Section (circle one) MA MB MC

Problem	Total Points	Score
1	15	
2	15	
3	20	
4	15	
5	15	
6	20	
Total	100	

- This exam is closed book. No Notes. If you forget a formula, ask one of us.
- No graphing or symbolic calculators are allowed. You may not use cell phones during the exam.
- Show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- If you are not sure what a question means, raise your hand and ask us.
- The hints are suggestions only.

1 (15 points) Find the Laplace Transform of each function:
(a) $f(t)=t^{2} e^{3 t}$
(b) $f(t)= \begin{cases}0 & 0<t<4 \\ e^{-3 t} & 4 \leq t\end{cases}$
(c) $f(t)= \begin{cases}\sin (2 t) & 0<t<\frac{\pi}{4} \\ 0 & \frac{\pi}{4} \leq t\end{cases}$

2 (15 points) Find the inverse Laplace Transforms.
(a) $\frac{1}{s^{2}+2 s}$
(b) $\frac{s}{s^{2}+4 s+13}$
(c) $\frac{e^{-s}}{(s+1)^{2}+1}$

3 (20 points)
(a) Solve using Laplace transforms.

$$
\begin{aligned}
y^{\prime \prime}+5 y^{\prime}+6 y & =0 \\
y(0)=1 \quad y^{\prime}(0) & =2
\end{aligned}
$$

(b) Find a formula for the solution as a convolution integral.

$$
\begin{gathered}
y^{\prime \prime}+5 y^{\prime}+6 y=e^{-3 t^{2}} \\
y(0)=0 \quad y^{\prime}(0)=0
\end{gathered}
$$

4 (15 points) Write $y(t)=\cos (2 \pi t)-\cos (4 \pi t)$ as a product and sketch its graph. The positions of the grid lines have been chosen to help you draw the graph.

Write a second order intial value problem that $y(t)$ satisfies. I can think of two different initial value problems. Don't worry about which one you choose.Don't forget the IC's.
(a) Compute the steady state solution to

$$
m u^{\prime \prime}+u^{\prime}+u=\cos t
$$

(b) Write the steady state solution in amplitude-phase form.
(c) What value of m yields the maximimu amplitude?

6 (20 points) A 1 kg bullet is fired directly upward from ground level $(y=0)$ with velocity $y^{\prime}(0)=100$ meters per second. The only forces which act are gravity $-m g$ (set $g=10 \mathrm{~m} / \mathrm{sec}^{2}$ to make the numbers easier) and air resistance $-\gamma y^{\prime}(t)$.
(a) Use Newton's second law to write a second order differential equation for the height $y(t)$. Add initial conditions. To make the calculations below easier, change the notation by replacing γ with $\frac{1}{\tau}$. Hint: If it helps, think of this as a forced damped mass-spring system without the spring (i.e. $k=0$).
(b) Compute the solution to the initial value problem as a function of t and τ.
(Problem 6 continued)
(c) The bullet lands 15 seconds later. Write down an equation for the coefficient τ.
(d) Make the assumption that $\frac{15}{\tau}$ is big enough that you can ignore the term $e^{\frac{-15}{\tau}}$. Now solve for τ.

Table of Laplace Transforms

1	$\frac{1}{s}$
$e^{a t}$	$\frac{1}{s-a}$
t^{n}	$\frac{n!}{s^{n+1}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$u_{a}(t)$	$\frac{e^{-a s}}{s}$
$\delta_{a}(t)$	$e^{-a s}$
$y^{\prime}(t)$	$s Y(s)-y(0)$
$y^{\prime \prime}(t)$	$s^{2} Y(s)-y(0) s-y^{\prime}(0)$
$e^{a t} y(t)$	$Y(s-a)$
$t y(t)$	$-\frac{d}{d s} Y(s)$
$u_{a}(t) y(t-a)$	$e^{-a s} Y(s)$
$u_{a}(t) y(t)$	$e^{-a s} \mathcal{L}\{y(t+a)\}$
$y(a t)$	$\frac{1}{a} Y\left(\frac{s}{a}\right)$

Trig Formulas
$\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$

$$
\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi
$$

$$
\cos \theta \cos \phi=\frac{1}{2}(\cos (\theta+\phi)+\cos (\theta-\phi))
$$

$$
\sin \theta \sin \phi=\frac{1}{2}(\cos (\theta-\phi)-\cos (\theta+\phi))
$$

$$
\sin \theta \cos \phi=\frac{1}{2}(\sin (\theta+\phi)+\sin (\theta-\phi))
$$

$$
\begin{aligned}
e^{i \theta} & =\cos \theta+i \sin \theta \\
\cos \theta & =\frac{e^{i \theta}+e^{-i \theta}}{2} \\
\sin \theta & =\frac{e^{i \theta}-e^{-i \theta}}{2 i} \\
\cosh \theta & =\frac{e^{\theta}+e^{-\theta}}{2} \\
\sinh \theta & =\frac{e^{\theta}-e^{-\theta}}{2}
\end{aligned}
$$

