Spring 2018 MATH 307 Final Exam 90 pts total

\qquad
Name: Heather

Instruction:

- Nothing but writing utensils and a double side 4 in $\times 6$ in notecard are allowed.
- Use the provided Table of Laplace Transforms.
- Unless otherwise specified, you must show work to receive full credit.

1. (13pts) Consider the initial value problem

$$
\frac{d y}{d x}=\frac{2 x+1}{y-1}, \quad y(0)=-1
$$

Find $y(1)$.

$$
\begin{aligned}
& (y-1) d y=(2 x+1) d x \\
& \frac{y^{2}}{2}-y=x^{2}+x+C \\
& y^{2}-2 y=2 x^{2}+2 x+B \\
& y(0)=-1 \Rightarrow 3=C \\
& y(x)=\frac{2 \pm \sqrt{4+4\left(2 x^{2}+2 x+3\right)}}{2} \\
& y(x)=1 \pm \sqrt{4+2 x^{2}+2 x} \\
& y(0)=-1 \Rightarrow y(x)=1-\sqrt{4+2 x^{2}+2 x} \\
& y(1)=1-2 \sqrt{2}
\end{aligned}
$$

2. (15pts) Newton's law of cooling states that the rate of change of temperature of an object in a surrounding medium is proportional to the difference of the temperature of the medium and the temperature of the object.

Suppose a metal bar, initially at temperature $T(0)=40$ degrees Celsius, is placed in a room which is held at the constant temperature of 20 degrees Celsius. One minute later the bar has cooled to 30 degrees. Find $T(t)$ for all time $t>0$.

Hint: first write the differential equation that models the temperature (in degrees Colsinus) as a function of time (in minutes). Start by calling the constant of proportionality k. Solving the initial value problem to obtain the temperature as a function of k and t. Then use the observed temperature after one minute to solve for k.

$$
\begin{aligned}
& \text { doesn't matter } f \text { nom ddn't put } a^{2}-\text { " sign here } \\
& \frac{d \tau}{d t}=-k(T-20) \text { in the begisinng. ail jute end up poly } \\
& \text { a regoste value for } k \text { later on. } \\
& \frac{d T}{T-20}=-k d t \\
& \ln |T-20|=-k t+c \\
& T-20=A e^{-k t} \\
& T=20+A e^{-k t} \\
& T(0)=40 \Rightarrow 40=20+A \quad \Rightarrow \quad A=20 \\
& T(t)=20+20 e^{-k t} \\
& T(1)=30=20+20 e^{-k} \\
& e^{-k}=\frac{10}{20}=\frac{1}{2} \text { (or can write } \\
& \begin{aligned}
-k=\ln \left(\frac{1}{2}\right)=-\ln 2 & \left.\begin{array}{rl}
T(t) & =20+20 e^{-k t} \\
& =20+20\left(e^{-k} t\right) \\
& =20+20\left(\frac{1}{2}\right)^{t}
\end{array}\right) \\
-(\ln 2) t &
\end{aligned} \\
& T(t)=20+20 e^{-(\ln 2) t} \\
& T(t)=20+20 e^{-k t}
\end{aligned}
$$

3. (13pts) Consider the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=t e^{t} \cos t+e^{t}+\sin t+1
$$

Write down the form of a particular solution (ie. the Ansatz), no need to find the constants.

$$
\begin{aligned}
& r^{2}-2 r+2=0 \\
& r=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ansatz: } \\
& y_{p}(t)=t\left((A t+B) e^{t} \cos t+(C t+D) e^{t} \sin t\right)+E e^{t}+F \cos t+G \sin t+H
\end{aligned}
$$

4. (15pts) You have a spring in a damping media, but you don't know the spring constant nor the damping constant. To find that out, you decide to attach a mass of 1 kg to the spring and plot the motion of this unforced damped spring-mass system. The graph below is a plot of the displacement of the mass at any time t. Write down the differential equation governing its motion.

Note: you should write down actual (estimated) numbers based on what you gather from the graph, not just a symbolic equation.

The next page is blank in case you need more space to work.

free vibration w/ damping:

$$
\begin{gathered}
m=1 \\
y^{\prime \prime}+\gamma y^{\prime}+k y=0 \\
\text { char eq: }-\frac{\gamma}{2} \pm \frac{\sqrt{\gamma^{2}-4 k}}{2}=-\frac{\gamma}{2} \pm i \underbrace{\frac{\sqrt{4 k-\gamma^{2}}}{2}}_{=\mu}
\end{gathered}
$$

Sol:

$$
\begin{aligned}
y(t) & =c_{1} e^{-\frac{\gamma}{2} t} \cos \mu t+c_{2} e^{-\frac{\gamma}{2}} \sin \mu t \\
& =A e^{-\frac{\gamma}{2} t} \cos (\mu t-\delta)
\end{aligned}
$$

Can immediately read off from the picture that

$$
A=2, \quad \delta=0, \quad \text { (quasi)-period }=2 \quad \Rightarrow \quad \mu=\pi
$$

(Extra space in case you need it.)

$$
\text { So, } y(t)=2 e^{-\frac{\gamma}{2} t} \cos (\pi t)
$$

To figure out γ :

$$
\begin{aligned}
& \underbrace{1=y(2)}_{\text {read off }}=2 e^{-\frac{\gamma}{2}(2)} \cos (2 \pi)=2 e^{-\gamma} \\
& \text { the graph } \\
& e^{-\gamma}=\frac{1}{2} \\
& -\gamma=\ln \left(\frac{1}{2}\right)=-\ln (2) \\
& \gamma=\ln (2) \approx 0.69
\end{aligned}
$$

To figure out k :

$$
\begin{aligned}
& \pi=\mu=\frac{\sqrt{4 k-\gamma^{2}}}{2} \\
& \Rightarrow 4 \pi^{2}=4 k-(\ln (2))^{2} \\
& \Rightarrow k=\pi^{2}+\left(\frac{\ln (2)}{2}\right)^{2} \approx 9.99 \\
& y^{\prime \prime}+\ln (2) y^{\prime}+\left(\pi^{2}+\left(\frac{\ln (2)}{2}\right)^{2}\right) y=0
\end{aligned}
$$

The approximation delta $=0$ is certainly reasonable based on the graph, but it might occur to you that the function $A \exp (-(g a m m a / 2) t) \cos (\mathrm{pit})$ doesn't have a maximum at $\mathrm{t}=0$, so delta can't be exactly zero and A can't be exactly 2 . Notice that the calculation of gamma doesn't require knowledge of the specific values of A and delta.

$$
\begin{aligned}
& A \cos \delta=A \cos (\pi \cdot 0-\delta)=y(\theta)=2 \\
& A \cos \delta) \ell^{-\gamma}=A \cos (\pi \cdot 2-\delta) e^{-\frac{\gamma}{2} 2}=y(2)=1
\end{aligned}
$$

Now dividing gives $l^{-\gamma}=2$ or $\gamma=\ln (2)$
5. (12pts) Find the Laplace transform

$$
\mathcal{L}\left\{2 y^{\prime \prime}(t)-t y^{\prime}(t)+3 y(t)\right\}
$$

in terms of $Y(s)=\mathcal{L}\{y\}$ and $Y^{\prime}(s)$, where $y(0)=2$ and $y^{\prime}(0)=-1$.
Hint: use \#16 in the table of Laplace transforms.

$$
\begin{aligned}
& \mathcal{L}\left\{2 y^{\prime \prime}(t)-t y^{\prime}(t)+3 y(t)\right\} \\
= & 2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\underbrace{\mathcal{L}\left\{-t y^{\prime}\right\}}+3 \mathcal{L}\{y\} \\
= & 2\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+\frac{\frac{d}{d s} \mathcal{L}\left\{y^{\prime}\right\}}{u \operatorname{sing} \# 16}+3 Y(s) \\
= & 2\left(s^{2} Y(s)-2 s+1\right)+\frac{d}{d s}\left(s Y(s)-\frac{Y(0)}{\frac{1}{2}}\right)+3 Y(s) \\
= & 2 s^{2} Y(s)-4 s+2+\left(s Y^{\prime}(s)+Y(s)\right)+3 Y(s) \\
= & s Y^{\prime}(s)+\left(2 s^{2}+4\right) Y(s)-4 s+2
\end{aligned}
$$

6. Consider the mechanical vibration modeled by the initial value problem:

$$
y^{\prime \prime}(t)+\pi^{2} y(t)=\pi \delta(t-1.5), \quad y(0)=-1, y^{\prime}(0)=0
$$

[a] (1 4pts) Find the solution to this initial value problem.
Hint: use Laplace transform.

$$
\begin{aligned}
& s^{2} Y-s\left(y(0)-\underset{-1}{y^{\prime}(0)}+\pi^{\prime \prime} Y(s)=\pi e^{-1.5 s}\right. \\
&\left(s^{2}+\pi^{2}\right) Y(s)+s=\pi e^{-1.5 s} \\
& Y(s)=\frac{\pi e^{-1.5 s}}{s^{2}+\pi^{2}}-\frac{s}{s^{2}+\pi^{2}} \\
& Y(s)=e^{-1.5 s \frac{\pi}{s^{2}+\pi^{2}}} \ddot{H}^{\prime \prime}(s) \\
& h(t)=\mathcal{L}^{-1}\{H(s)\}=\sin \pi t \\
& y(t)=\mathcal{L}^{-1}\{Y(s)\}=u_{1 . s}(t) h(t-1.5)-\cos \pi t \\
& y(t)=u_{1.5(t) \sin \left(\pi\left(t-\frac{3}{2}\right)\right)-\cos (\pi t)} \\
&=\left\{\begin{array}{l}
-\cos (\pi t), 0 \leqslant t<1.5 \\
\sin \left(\pi\left(t-\frac{3}{2}\right)\right)-\cos (\pi t), t \geq 1.5
\end{array}\right.
\end{aligned}
$$

For part (b):

Method 2

$\sin \left(x-\frac{3 \pi}{2}\right)=\cos (x)$
So $y(t)=\left\{\begin{array}{l}-\cos (\pi t), \quad 0 \leqslant t<1.5 \\ \cos (\pi t)-\cos (\pi t), \quad t \geq 1.5\end{array}\right.$ $=0$

6 (continue)

[b] (8pts) Graph the solution found in part [a].
Hint: if you couldn't solve part [a], you can still attempt to graph the solution as much as possible to earn partial credits.

