Spring 2018 MATH 307 Final Exam
90 pts total

H eather

Name:

Instruction:

e Nothing but writing utensils and a double side 4in x 6in notecard are allowed.
e Use the provided Table of Laplace Transforms.
e Unless otherwise specified, you must show work to receive full credit.
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1. (13pts) Consider the initial value problem
dy 2z +1
dr  y—1"

y(0) = —L.

Find y(1).
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2. (15pts) Newton’s law of cooling states that the rate of change of temperature of an
object in a surrounding medium is proportional to the difference of the temperature of
the medium and the temperature of the object.

Suppose a metal bar, initially at temperature 7'(0) = 40 degrees Celsius, is placed in
a room which is held at the constant temperature of 20 degrees Celsius. One minute
later the bar has cooled to 30 degrees. Find T'(¢) for all time ¢ > 0.

Hint: first write the differential equation that models the temperature (in degrees Cel-
sius) as a function of time (in minutes). Start by calling the constant of proportionality
k. Solving the initial value problem to obtain the temperature as a function of k and t.
Then use the observed temperature after one minute to solve for k.
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3. (13pts) Consider the differential equation
y' — 2y + 2y = te' cost + e’ +sint + 1.

Write down the form of a particular solution (i.e. the Ansatz), no need to find the
constants.
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4. (15pts) You have a spring in a damping media, but you don’t know the spring
constant nor the damping constant. To find that out, you decide to attach a mass of
1 kg to the spring and plot the motion of this unforced damped spring-mass system.
The graph below is a plot of the displacement of the mass at any time t. Write down
the differential equation governing its motion.

Note: you should write down actual (estimated) numbers based on what you gather from
the graph, not just a symbolic equation.

The next page is blank in case you need more space to work.
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(Extra space in case you need it.)
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* The approximation delta = O is certainly reasonable based on the graph, but it might

occur to you that the function Aexp(-(gamma/2)t) cos(pi t) doesn't have a maximum
at t=0, so delta can't be exactly zero and A can't be exactly 2. Notice that the

calculation of gamma doesn't require knowledge of the specific values of A and
delta.
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5. (12pts) Find the Laplace transform

L{2y"(t) — ty/(t) + 3y(t)},
in terms of Y'(s) = L{y} and Y'(s), where y(0) = 2 and y'(0) = —1.
Hint: use #16 in the table of Laplace transforms.
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6. Consider the mechanical vibration modeled by the initial value problem:
y'(8) +my(t) = 7ot — 1.5),  y(0) = 1, y'(0) = 0.

[a] (14pts) Find the solution to this initial value problem.
Hint: use Laplace transform.
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6 (continue)
[b] (8pts) Graph the solution found in part [a].

Hint: if you couldn’t solve part [a], you can still attempt to graph the solution as much
as possible to earn partial credits.
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