Name: \qquad

Mathematics 207 J
 University of Washington

MIDTERM 1

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln \left(\frac{\pi}{3}\right)$ or $5 \sqrt{3}$ or $e^{2.5}$).
- Simplify $e^{a \ln (x)}=x^{a}$ for $x>0$.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 6 pages, plus a cover sheet. Please make sure that your exam is complete.
- You have 50 minutes to complete the exam.
- HAVE FUN!

Problem	Possible	Score
1	10	
2	8	
3	10	
4	11	
5	16	
Total	55	

Good Luck!

Problem 1. Consider the initial value problem,

$$
\frac{d y}{d t}+\frac{2 y}{5+t}=6, \quad y(0)=0 .
$$

(a) (2 points) Circle your answer
(i) Is this a linear differential equation?
YES
NO
(ii) Is this a separable differential equation?
YES
NO
(b) (8 points) Solve the initial value problem.

Problem 2. (8 points) You deposit $\$ 10000$ into a savings account at 5% annual interest, compounded continuously. You withdraw money from the account at a continuous rate of $\$ 1000$ per year. After how many years will the account balance be $\$ 0$?

Problem 3. (10 points) Consider the initial value problem

$$
t^{2} \frac{d y}{d t}=\frac{1}{y+3}, \quad y(1)=-5 .
$$

Solve the initial value problem. Give an explicit formula for y.

Problem 4. A tank holding water that contains an impurity Q is attached to a recirculating filter, as pictured below. The liquid passes through the filter at the rate of $4 \mathrm{gal} / \mathrm{min}$. The filter removes $1 / 3$ of the amount of Q that passes through it, and lets the remaining $2 / 3$ go back into the tank.

(a) (5 points) The tank contains 20 gallons of water. Initially there are 2 pounds of Q dissolved in the water. Pose a differential equation with initial value for the amount $Q(t)$ in the tank at time t.
(b) (6 points) Now suppose that the tank initially contains 2 pounds of Q dissolved in 20 gallons of water. Water containing 1 pound of Q per gallon is added to the tank at the rate of 2 gallons per minute. The volume of water in the tank therefore increases. The filter continues to operate as above at 4 gallons per minute, removing $1 / 3$ of the amount of Q passing through it. Pose a differential equation with initial value for the amount $Q(t)$ in the tank at time t.

Problem 5. Biologists have observed that a population of wild pigs satisfies the following differential equation, where t is in days:

$$
\frac{d S}{d t}=f(S)
$$

Four proposed expressions for $f(S)$ are shown below:

Part (a): (4 points) You observe

- If the population of pigs is 150 , the population decreases until it reaches 0 .
- If the population of pigs is 600 , the population increases until it reaches 1000 .

CIRCLE which model illustrates these two observations

$$
\text { Model A } \quad \text { Model B } \quad \text { Model C } \quad \text { Model D }
$$

There are more parts to this problem on the following page!

Answer parts (b) and (c) below based on the model you chose in part (a):

Part (b): (8 points) Determine the equilibrium solutions and classify each one as asymptotically stable or unstable. Sketch the direction field, and in your sketch draw an approximate graph of the solution $S(t)$ that satisfies $S(0)=700$; be sure to indicate the behavior of $S(t)$ as t goes to $+\infty$.

Part (c): (4 points) The government plans to hunt a fixed number k of pigs per day. If there are 700 pigs when they start hunting, what value of k (approximately) will keep the population of pigs constant. EXPLAIN.

