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Exercise 1. (4 points) Choose the direction field corresponding to each differential equations.
Justify your answers:

1. y′ = x
y
.

2. y′ = −xy

Key:

1. Properties of y′ = x
y
:

� Horizontal tangents when y′ = 0, i.e. when x = 0.

The direction field has horizontal arrows when on the y-axis (x = 0).

Candidates: Direction fields 1,2,3,4.

� Arrows are pointing up if y′ = x
y
> 0. That happens when x and y have the same

sign, in the first and third quadrant.

Candidates: Direction fields 1,2, 6

� When y gets close to 0, for a given x, x
y

goes to infinity. The tangent lines get close
to being vertical.

Candidates:Directions fields 2, 3

� When x = y, the slope is 1.

Candidates: Direction fields 2, 6

In conclusion, the only direction fields that has all the properties is the direction field 2
.

2. Properties of y′ = −xy:

� Horizontal tangent when x or y is 0

Candidates: Direction fields 1, 3

� Positive slope when x and y have opposite signs.

Candidates Direction fields 3, 4, 5

The only direction field that satisfies both properties is 3 .
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(a) Direction field 1 (b) Direction field 2

(c) Direction field 3 (d) Direction field 4

(e) Direction field 5 (f) Direction field 6
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Exercise 2. (6 points) Find the general solutions. Find explicit solutions if possible.

1.
ty′

t4 cos(2t) + 3y
= 1

Key:
ty′

t4 cos(2t) + 3y
= 1

iff
ty′ = t4 cos 2t+ 3y

ty′ − 3y = t4 cos 2t

y′ − 3

t
y = t3 cos 2t

The equation is linear. We can solve it using integrating factors.

� Integrating factor:

µ(t) = e
∫ −3

t
dt = e−3 ln(t) = t−3

� Multiply the integrating factor:

y′

t3
− 3

t4
y︸ ︷︷ ︸

d
dt(

y

t3
)

= cos 2t

� Integrate both sides:
y

t3
=

sin(2t)

2
+ C

� Divide by the integrating factor:

General solution y =
t3 sin(2t)

2
+ Ct3
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2.
dy

dx
=

x2y2 + y2

x2y3 + 4y2x2

Key:
dy

dx
=

x2y2 + y2

x2y3 + 4y2x2

dy

dx
=

(x2 + 1)y2

x2(y3 + 4y2)

Divide by y2, dx, and multiply by y2 + 4y2.

y3 + 4y2

y2
dy =

x2 + 1

x2
dx

The equation is separable and separated.

Let’s integrate both sides: ∫
y3 + 4y2

y2
dy =

∫
x2 + 1

x2
dx

∫
(y + 4)dy =

∫
1 +

1

x2
dx

Implicit solution:
y2

2
+ 4y = x− 1

x
+ C

This is a quadratic equation in y, let’s solve for y:

y2 + 8y + 16 = x− 1

x
+ (C + 16)︸ ︷︷ ︸

C

(y + 4)2 = x− 1

x
+ C

General solution: y = −4±
√
x− 1

x
+ C
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Exercise 3. (6 points) A tank with capacity of 500gal originally contains 200 gallons of water
with 100 lb of salt in solution. Water containing 2 lb of salt per gallon is entering at a rate of
5 gal/min, and the mixture is allowed to flow out of the tank at a rate of 3 gal/min.

1. Find the amount of salt in the tank at any time prior to the instant when the solution
begins to overflow.

Key: Let A(t) be the amount of salt in the tank, in lb, at time t, in minutes.

dA

dt
= rate in− rate out, rate = flow rate ∗ concentration

� rate in: 5gal/min get in with the concentration 2lb/gal.

rate in = 5 ∗ 2 = 10.

� rate out:3 gal/min get out of the tank. The concentration of salt of the solution that
flows out, is the concentration of salt in the tank. The concentration is the quotient

A(t)
V olume

.

The tank initially contains 200 gallons. Every minute, 5 gal flow in the tank and
3 gallons flow out of the tanks. Every minute, the volume increases by 2 gallons.
Therefore,

V olume = 200 + 2t.

rate out = 3 ∗ A(t)

200 + 2t

therefore A is solution to the initial value problem

dA

dt
= 10− 3A(t)

200 + 2t
, A(0) = 100

Let’s solve the initial value problem: The equation is linear and not separable. We’ll use
the integrating factor method.

A′ +
3

200 + 2t
A(t) = 10

� Integrating factor:

µ(t) = e
∫

3
200+2t = e

3
2
ln(200+2t) = (200 + 2t)3/2

� Multiply by the integrating factor:

(200 + 2t)3/2y′ +
3A

(200 + 2t)5/2︸ ︷︷ ︸
d
dt((200+2t)3/2A)

= 10(200 + 2t)3/2
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� Integrate both sides:

(200 + 2t)3/2A = 10 ∗ 1

5
(200 + 2t)5/2 + C

� Divide by the integrating factor:

A = 2(200 + 2t) +
C

(200 + 2t)3/2

� Solve for the initial condition:

A(0) = 100 = 400 +
C

2003/2

C = −300(200)3/2

� Solution A(t) = 400 + 4t− 300(200)3/2

(200 + 2t)3/2

2. Find the concentration (in pounds per gallon) of salt in the tank when it is on the point
of overflowing.

Key: Let’s find the time when the tank starts to overflow:

The tank capacity is 500 gallons. The volume of solution is 200 + 2t. The tank starts to
overflow when 200 + 2t = 500, i.e. after 150 minutes.

The concentration at time t = 150 is

Concentration =
A(150)

V olume
=

1000− 300(200)3/2

5003/2

500
= 2− 6

√
10

125
≈ 1.85lb/gal
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Exercise 4. (5 points)

1. Solve the initial value problem

ty′ + 2y = 2
e3(t−4)

t
, y(4) = 0

2. Find y′(4).

Key: The equation is linear, non-separable.

y′ +
2

t
y =

2e3(t−4)

t2

� Integrating factor:
µ(t) = e

∫
2
t
dt = e2 ln(t) = t2

� Multiply both sides by the integrating factor:

t2y′ + 2ty︸ ︷︷ ︸
d
dt
(t2y)

= 2e3(t−4)

� Integrate both sides:

t2y =
2

3
e3(t−4) + C

� Divide both sides by the integrating factor

y =
2e3(t−4)

3t2
+
C

t2

� Solve for the initial condition:

y(4) = 0 =
2

3 ∗ 16
+
C

16

C =
−2

3

y(t) =
2e3(t−4)

3t2
− 2

3t2

Use the differential equation to evaluate y′(4):

4y′(4) + 2y(4) =
2e0

4

Since y(4) = 0, y′(4) =
1

8
An alternative method would be to differentiate the solution found in part 1.
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Exercise 5. (4 points) Consider the initial value problem

y′ = 3 + t− y, y(1) = 2

1. Use Euler method with step size 1/3 to get an approximation of y(0).

Key: The initial condition is at t = 1, and we want an approximation of y at t = 0, h
will be negative, h = −1/3.

n tn = tn−1 + h yn = yn−1 + hf(tn−1, yn−1) f(tn, yn) = 3 + tn − yn
n = 0 t0 = 1 y0 = 2 f(t0, y0) = 3 + 1− 2

= 2
n = 1 t1 = 1− 1

3
y1 = 2− 1

3
∗ 2 f(t1, y1) = 3 + 2

3
− 4

3

= 2
3

= 4
3

= 7
3

n = 2 t2 = 2
3
− 1

3
y2 = 4

3
− 1

3
∗ 7

3
f(t2, y2) = 3 + 1

3
− 5

9

= 1
3

= 5
9

= 25
9

n = 3 t3 = 1
3
− 1

3
y3 = 5

9
− 1

3
∗ 25

9

= 0 = −10
27

An approximation of y(0) is
−10

27
.

2. On the interval [0,1], are the solutions concave up or concave down? Justify your answer.

Key: Several methods to solve this question:

� Method 1: f(tnyn) is an approximation of the slope of the solution at tn.

We found

y′(0) ≈ 3 + 0 +
10

27
≈ 3.4

y′(1/3) ≈ 25/9 ≈ 2.8

y′(2/3) ≈ 7/3 ≈ 2.3

y′(1) = 2

Clearly the derivative y′ is decreasing, therefore the derivative of y′ (second deriva-

tive) is negative and y is concave down.

� Method 2: Find the second derivative of y using the differential equation:

Take the derivative with respect to t of the differential equation y′ = 3 + t− y:

y′′ = 0 + 1− y′ = 1− (3 + t− y) = −2− t+ y

y is less than 2 on the interval [0, 1], t ∈ [0, 1], therefore y′′ < 0 and y is concave
down.
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