0.4 pt0 pt

Work Sheet #8

This worksheet is designed to help you review for the midterm. Discuss solutions with you group, continue working on the worksheet at home, bring questions to Thursday's quiz section.

- 1. Give an example of the following:
 - (a) Three non-zero vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} such that $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$ but $\mathbf{b} \neq \mathbf{c}$.
 - (b) A vector of length 5 that is orthogonal to $\mathbf{i} + 2\mathbf{j}$. How many such vectors are there in the *xy*-plane? How many such vectors are there in the entire three-dimensional space?
- 2. Suppose you are given non-zero vectors **a**, **b**, and **c** in three-dimensional space. Use dotand cross-products and multiplication by scalars to give expressions for vectors satisfying the following geometric descriptions:
 - (a) A vector of length 2 that is orthogonal to **a** and **b**.
 - (b) A vector with the same length as **b** and the same direction as **a**.
 - (c) A vector that is orthogonal to \mathbf{a} and $\mathbf{b} \times \mathbf{c}$.
- 3. for each pair of objects, indicate whether they are parallel, perpendicular, or neither.

(a) If $ \text{proj}_{\mathbf{a}}\mathbf{b} = \mathbf{b} $, then vectors \mathbf{a} and \mathbf{b} are			
	parallel	perpendicular	$\mathbf{neither}$
(b) If $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = 0$, then vector \mathbf{c}	and the plane parallel		and b are neither
(c) The planes $x - 2y + 3z = 5$ and $2x - 5$ same	4y + 6z = 5. parallel	perpendicular	neither
(d) The planes $x - 2y + 3z = 5$ and $2x - 5$ same	4y + 6z = 10. parallel	perpendicular	neither
(e) The plane $x - 2y = 5$ and the x-axis (or the y or z-ax parallel	is). perpendicular	neither
(f) The plane $x - 2y = 5$ and the <i>xy</i> -plan	e (or the other parallel	coordinate planes). perpendicular	neither

- 4. (a) Find a vector function $\mathbf{r}(t)$ that represents the curve of intersection of the plane z = 16and the surface $z = x^2 + 4y^2$.
 - (b) Compute $\mathbf{r}'(t)$.
 - (c) Write down but do not evaluate an integral for the length of the curve.
 - (d) Find a vector equation for the tangent line to the curve at the point $(2, \sqrt{3}, 16)$.
 - (e) Find the equation of a plane parallel to the x-axis and containing the points A(0,0,3) and B(0,5,0).
 - (f) Find the point where the line of part (d) intersects the plane of part (e). (Do not expect "nice numbers".)
- 5. Find a parametrization $\mathbf{r}(t)$ of the curve that traces the circle $(x-5)^2 + y^2 = 1$ in the clockwise direction starting at the point (4,0) (that is, $\mathbf{r}(0) = \langle 4,0 \rangle$).
- 6. (a) A particle moves along the helix so that its position vector at time t is $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$. Compute the curvature $\kappa(t)$ of the helix.
 - (b) Reparametrize the helix by arclength.
 - (c) Assume now that another particle moves along the same path, but its position at time τ is described by $\mathbf{q}(\tau) = \langle 4\cos(\tau^5), 4\sin(\tau^5), 3\tau^5 \rangle$. Compute the length of $\mathbf{q}'(\tau) \times \mathbf{q}''(\tau)$. **Hint:** do not compute $q''(\tau)$. Instead use the information you computed in part (a). (What characteristic of the curve does not depend on its parametrization?)