Math 126 C - Spring 2010
Mid-Term Exam Number Two
May 13, 2010

Name: ___________________________ Student ID no.: ________________

Signature: ___________________________ Section: ____________

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

• Complete all questions.

• You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.

• If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.

• You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.

• Show all work for full credit.

• You have 50 minutes to complete the exam.
1. A particle moves along a curve in the \(xy \)-plane so that its position vector is
\[
\vec{r}(t) = (t + \cos t, t - \sin t)
\]
for \(t \geq 0 \). Assume \(t \) is in seconds, and coordinates are in centimeters.

(a) Find the speed of the particle at time \(t = \pi \).

(b) There are infinitely many times \(t \) when the velocity vector and the acceleration vector for this particle are orthogonal. Give one of these times.
2. Find the curvature of the curve

\[x = t^2, \quad y = 1 - t, \quad z = 1 - t^2 \]

at the point \(t = 3 \).
3. Let

\[f(x, y) = \frac{1}{x} + \frac{1}{y} + x + y. \]

(a) Find a point on the surface \(z = f(x, y) \) where the tangent plane is parallel to the plane \(48x + 6y + 2z = 7 \).

(b) Find and classify all critical points of the surface \(z = f(x, y) \).
4. Let R be the region in the first quadrant of the xy-plane bounded by $y = 6 - x$, $y = 6 - 2x$, and the x-axis.

Express the volume of three-dimensional space lying above R and below the surface

$$z = xy$$

as one iterated double integral.