MATH 126 D, E, & F Exam II Autumn 2017

Name _____

Student ID #_____

Section _____

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:_____

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Your exam should consist of this cover sheet, followed by 5 problems. Check that you have a complete exam.
- Pace yourself. You have 50 minutes to complete the exam and there are 5 pages. Try not to spend more than 10 minutes on each page.
- Unless otherwise indicated, show all your work and justify your answers.
- Unless otherwise indicated, your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- You may use a **TI 30XII S** calculator and one 8.5×11-inch sheet of handwritten notes. **All** other calculators, electronic devices, and sources are forbidden.
- You are not allowed to use scratch paper. If you need more room, use the back of the page and indicate to the reader that you have done so.
- The use of headphones or earbuds during the exam is not permitted.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- You are not allowed to use your phone for any reason during this exam. Turn your phone off and put it away for the duration of the exam.

GOOD LUCK!

1. (10 points) Find the equation of the **normal plane** to the curve $\mathbf{r}(t) = \langle 3t^2, -t^3, 2t \rangle$ at t = 2. Simplify your answer so that it is the form z = Ax + By + C and put a box around your final answer. 2. (10 points) Find the shortest distance from the cone $z = \sqrt{x^2 + y^2}$ to the point (3, -2, 0). (For full credit, you must show work and/or write a few sentences to explain how you know this distance is the minimum.) 3. (10 points) Consider the surface S defined by the equation

$$e^z + y^2 z + xy = 4.$$

(a) Use implicit differentiation to compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

(b) The point (1,3,0) is on the surface S. Use differentials to approximate the value of k if (1.01, 3.03, k) is also on S.

4. (10 points) Suppose f(x, y) is a continuous function and

$$\iint_{D} f(x,y) \, dA = \int_{0}^{2} \int_{x^{2}}^{4} f(x,y) \, dy \, dx.$$

(a) Sketch and **shade** the region D.

(b) Reverse the order of integration.

5. (10 points) A lamina occupies the region in the xy-plane above the x-axis and between the polar curves

 $r = 2\cos\theta$ and $r = 2 + \cos\theta$ (shown below).

The density of the lamina at the point (x, y) is

$$\rho(x,y) = \frac{y}{x^2 + y^2}.$$

Compute the mass of the lamina.

