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Student ID # Section

HONOR STATEMENT
“I affirm that my work upholds the highest standards of honesty and academic integrity at the

University of Washington, and that I have neither given nor received any unauthorized assistance
on this exam.”

SIGNATURE:

1 10

2 10

3 10

4 10

5 10

Total 50

• Your exam should consist of this cover sheet, followed by 5 problems on 5 pages. Check that
you have a complete exam.

• Pace yourself. You have 50 minutes to complete the exam and there are 5 pages. Try not
to spend more than 10 minutes on each page.

• Unless otherwise indicated, show all your work and justify your answers.

• Unless otherwise indicated, your answers should be exact values rather than decimal approx-
imations. (For example, π

4
is an exact answer and is preferable to its decimal approximation

0.7854.)

• You may use a scientific calculator and one 8.5×11-inch sheet of handwritten notes. All
other electronic devices (including graphing and programmable calculators and calculators
with calculus functions) are forbidden.

• You are not allowed to use scratch paper. If you need more room, use the back of the page
and indicate to the reader that you have done so.

• The use of headphones or earbuds during the exam is not permitted.

• There are multiple versions of the exam, you have signed an honor statement, and cheating
is a hassle for everyone involved. DO NOT CHEAT.

• You are not allowed to use your phone for any reason during this exam. Turn your phone
off and put it away for the duration of the exam.

GOOD LUCK!
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1. (10 points) Find the equation of the plane tangent to f(x, y) = (4y2 − x2)e−x
2−y2 at (1, 1).
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2. (10 points) A moving object has acceleration a(t) =
(
cos t

2

)
k, initial velocity v(0) = i− k,

and initial position r(0) = i + j. Find its position at time t.
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3. (10 points) Let D be the closed triangular region shown below. Find the absolute maximum
and absolute minimum values of f(x, y) = x3 + x2y + 2y2 + 5 on D.
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4. (10 points) Suppose ∫∫
D

f(x, y) dA =

∫ 2

1

∫ 2y

y

f(x, y) dx dy.

Sketch and shade the region D on the axes below and reverse the order of integration.
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5. (10 points) Let D =

{
(x, y) : x ≥ 0, y ≥ 1

2
, x2 + y2 ≤ 1

}
as in the figure below. A lamina

in the shape of D has density

ρ(x, y) =
18

x2 + y2
.

The moment of the lamina about the x-axis is Mx =
∫∫

D
yρ(x, y) dA. Compute Mx.

(SUGGESTION: Convert to polar coordinates.)
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