MATH 126 C Exam I Winter 2018

Name _____

Student ID #_____

Section _____

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	10	
2	8	
3	6	
4	9	
5	8	
6	9	
Total	50	

- Your exam should consist of this cover sheet, followed by 6 problems on 5 pages. Check that you have a complete exam.
- Pace yourself. You have 50 minutes to complete the exam and there are 5 pages. Try not to spend more than 10 minutes on each page.
- Unless otherwise indicated, show all your work and justify your answers.
- Unless otherwise indicated, your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- You may use a **TI 30XII S** calculator and one 8.5×11-inch sheet of handwritten notes. **All other calculators, electronic devices, and sources are forbidden**.
- You are not allowed to use scratch paper. If you need more room, use the back of the page and indicate to the reader that you have done so.
- The use of headphones or earbuds during the exam is not permitted.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- You are not allowed to use your phone for any reason during this exam. Turn your phone off and put it away for the duration of the exam.

GOOD LUCK!

1. (10 points)

(a) In this problem \mathbf{u} , \mathbf{v} , and \mathbf{w} are non-zero vectors in \mathbb{R}^3 . Indicate whether each of the following expressions is a scalar (S), a vector (V), or nonsense (N). (You do not need to show any work for this part.)

expression	(circle one)		
$\mathbf{u}\cdot (\mathbf{v}\times \mathbf{w})$	S	\mathbf{V}	Ν
$(\mathbf{u}\cdot\mathbf{v}) imes\mathbf{w}$	\mathbf{S}	\mathbf{V}	Ν
$rac{{f u}\cdot{f v}}{ {f w} }$	\mathbf{S}	V	\mathbf{N}
$\left(rac{{f u}\cdot{f v}}{ {f w} } ight){f w}$	S	V	\mathbf{N}
$\mathbf{comp}_{\mathbf{w}}(\mathbf{u}-\mathbf{v})$	\mathbf{S}	\mathbf{V}	Ν
$\frac{1}{ \mathbf{u} }\mathbf{proj}_{\mathbf{w}}(\mathbf{v})$	\mathbf{S}	V	\mathbf{N}

(b) Find two vectors with magnitude 4 that are parallel to $\mathbf{a} = \mathbf{i} - 2\mathbf{k}$.

2. (8 points) Identify the trace (if it exists) of the quadric surface $x^2 - y^2 + z^2 = 1$ given the plane. (You do not need to show any work.)

Choose your answers from the following list:

circle	ellipse	hyperbola	parabola
point	line	pair of lines	does not exist

- (a) the plane x = -1
- (b) the plane $x = k, k \neq \pm 1$
- (c) the plane y = 0
- (d) the plane $y = k, \, k \neq 0$

- 3. (6 points)
 - (a) Find Cartesian coordinates of the point with polar coordinates $\left(-10, \frac{11\pi}{6}\right)$.
 - (b) Find polar coordinates with r < 0 for the point whose Cartesian coordinates are (0, 14).

4. (9 points) Find the equation of the plane that is parallel to the vector $\mathbf{v} = \langle 2, -1, 4 \rangle$ and contains the line of intersection of the planes

$$x + y + z = 5$$
 and $x + 3y - 5z = -1$.

Simplify your answer to the form ax + by + cz = d.

5. (8 points) A particle moves along the curve of intersection of the surfaces

$$x^2 + y^2 = 16$$
 and $z = x + y$.

Find a vector function $\mathbf{r}(t)$ for the particle's path and use it to find the normal and tangential components of the particle's acceleration at the point (-4, 0, -4).

6. (9 points) Beginning at t = 0, a particle moves along the curve defined by

$$\mathbf{r}(t) = \langle \sin t - t \cos t, \cos t + t \sin t, \sqrt{6}t^2 \rangle.$$

(a) Reparametrize the curve with respect to arc length measured from the point where t = 0 in the direction of increasing t.

(b) Give the coordinates (x, y, z) of the particle after it has traveled 10 distance units along this curve.