Exam I Hints and Answers Math 126 E Spring 2014

- 1. (a) (3 points) $(x-4)^2 + (y-7)^2 + (z-6)^2 = 6^2$
 - (b) (3 points) $\left(-\sqrt{12}, -\frac{\pi}{6}\right)$
 - (c) (5 points) $\cos^{-1}\left(\frac{15}{\sqrt{11}\sqrt{21}}\right)$ OR $\pi \cos^{-1}\left(\frac{-15}{\sqrt{11}\sqrt{21}}\right)$
- 2. (a) (4 points) Standard form: $\frac{(x-2)^2}{8} + \frac{(y-1)^2}{4} \frac{z}{2} = 1$; elliptic paraboloid

(b) (5 points)
$$\mathbf{v} = \left\langle \frac{26}{\sqrt{185 + 49\pi^2}}, \frac{14\pi}{\sqrt{185 + 49\pi^2}}, \frac{8}{\sqrt{185 + 49\pi^2}} \right\rangle$$

- 3. (a) (4 points) $\overrightarrow{PQ} = \langle -4, 1, 1 \rangle$ and $\overrightarrow{PR} = \langle 1, -1, 4 \rangle$. $\overrightarrow{PQ} \times \overrightarrow{PR} = \langle 5, 17, 3 \rangle \neq 0$. So, \overrightarrow{PQ} is not parallel to \overrightarrow{PR} and the three points do not lie on a single line.
 - (b) (4 points) area of triangle = $\frac{\sqrt{323}}{2}$
 - (c) (6 points) $\left(\frac{13}{3}, \frac{2}{3}, \frac{2}{3}\right)$
- 4. (a) (4 points) $\mathbf{r}(t) = \left\langle \frac{t^3}{20}, t, \frac{t^2}{4} \right\rangle$
 - (b) (4 points) $\kappa(20) = \frac{\sqrt{3745}}{2(3701)^{3/2}}$
- 5. (a) (5 points) slope of tangent line = $-\frac{3}{3+\sqrt{2}}$
 - (b) (3 points) ii is the correct graph.