Your Name

Your Signature

our manie

Stude	nt ID	#			

Quiz Section

- Don't open the exam until everyone has a copy and the start of the test is announced. Once the exam starts, check that you have 5 pages of problems, in addition to this cover page.
- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes. Do not share notes. Graphing/integrating/differentiating calculators are NOT allowed.
- Please silence and put away your cell phone and all other electronics.
- Unless otherwise instructed, you must show your work. Answers with incomplete or incorrect work may receive little or no credit, even if the answer happens to be correct.
- Leave your answers in exact form (unless otherwise instructed.)
- There are different versions of this exam. Cheating is a serious offense and will be dealt with in accordance with the university's rules for academic misconduct.
- Please place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question. Good luck!

Problem	Total Points	Score
1	8	
2	12	
3	10	
4	12	
5	8	
Total	50	

- 1. [8 points] Answer the following questions. You need not show work or explain your answers.
 - (a) [4 points] In this problem, **u**, **v**, and **w** are vectors, and *a*, *b* and *c* are scalars. For each expression below, decide if it is a vector (**V**), a scalar (**S**), or nonsense (**N**).

	Cii	cle one	э:
$(\mathbf{u}\cdot\mathbf{v})\mathbf{w}$	\mathbf{V}	\mathbf{S}	\mathbf{N}
$\frac{ \mathbf{v} }{\mathbf{v}}$	V	\mathbf{S}	\mathbf{N}
$\operatorname{comp}_{\mathbf{w}}(\mathbf{v} + b\mathbf{u})$	V	\mathbf{S}	\mathbf{N}
$a\mathbf{u} \times (b\mathbf{v} \cdot c\mathbf{w})$	V	\mathbf{S}	Ν

(b) [3 points] In this problem, **u**, **v**, and **w** are **non-zero** vectors in 3-space, and no two of them are parallel or perpendicular to each other. For each statement below, decide if it is always true (**T**), always false (**F**), or only sometimes true (**S**).

	Cire	cle one	:
$\operatorname{comp}_{\mathbf{w}}(\mathbf{v} + \mathbf{u})$ is a positive scalar	Т	\mathbf{F}	\mathbf{S}
$\operatorname{proj}_{\mathbf{w}}(\mathbf{v} + \mathbf{u})$ is parallel to \mathbf{w}	Т	\mathbf{F}	\mathbf{S}
$\mathbf{u} \cdot (\mathbf{w} \times (-\mathbf{w}))$ is zero	\mathbf{T}	\mathbf{F}	\mathbf{S}

(c) [1 points] Give an example of a nonzero vector \mathbf{v} such that $\operatorname{proj}_{\mathbf{k}} \mathbf{v} = \mathbf{0}$

- **2.** [12 points] Let α denote the plane 2x + y 2z = 2. Let A, B, C denote the points where the plane α intersects the x-axis, the y-axis, and the z-axis, respectively.
- (a) [3 points] Find the coordinates of the points A, B, and C.
- (b) [3 points] Find a vector equation for the line through A which is parallel to the line BC.

(c) [6 points] Find the distance from the origin O(0,0,0) to the plane α specified above. Show work. **3.** [10 points] Let C denote the polar curve

 $r = 4\sin(\theta).$

(a) [4 points] Sketch the graph of C in xy-coordinates.

(b) [6 points] Find the equation y = mx + b of the tangent line to the curve C at $\theta = \frac{\pi}{6}$. Show work. **4. [12 points]** A portion of the path followed by a rollercoaster can be parameterized by the vector function:

 $\mathbf{r}(t) = \langle -20t^2, 30t + 6, 10\sin(t^2) \rangle$

(a) [3 points] Compute $\mathbf{r}'(t)$ and $\mathbf{r}'(0)$

(b) [3 points] Find parametric equations for the tangent line to this path at t = 0.

(c) [6 points] Find the curvature of the rollercoaster's path at t = 0. Show work.

Midterm 1

5. [8 points] Circle the correct answers (no explanation needed).

Consider the surface $z^2 = 3x^2 + 2y^2$.

(a) Describe the traces (cross-sections) of this surface parallel to the given plane.

(i) Traces parallel to the yz -plane (when x is fixed) are:				
PARABOLAS	HYPERBOLAS	ELLIPSES		
(ii) Traces parallel to the xz -	plane (when y is fixed) are:			
PARABOLAS	HYPERBOLAS	ELLIPSES		
(iii) traces parallel to the xy -plane (when z is fixed) are:				
PARABOLAS	HYPERBOLAS	ELLIPSES		

(b) Circle the name of the surface given by $z^2 = 3x^2 + 2y^2$:

CONE,	SPHERE,	ELLIPSOID
Parabolic CYLINDER,	Hyperbolic CYLINDER,	Elliptical CYLINDER,
HYPERBOLOID,	Elliptic PARABOLOID, H	yperbolic PARABOLOID,
NONE of the above		