Math 126 - Spring 2013 Exam 1 April 25, 2013

Name: _____

Section: $_$

Student ID Number: _____

PAGE 1	11	
PAGE 2	12	
PAGE 3	14	
PAGE 4	13	
Total	50	

- There are 4 pages of questions. Make sure your exam contains all these questions.
- You are allowed to use a scientific calculator (no graphing calculators and no calculators that have calculus capabilities) and one hand-written 8.5 by 11 inch page of notes.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded. Give exact answers wherever possible.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There may be multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the student misconduct board. In such an instance, you will be force to meet in front of a board of professors to explain your actions.

DO NOT CHEAT OR DO ANYTHING THAT LOOKS SUSPICIOUS! WE WILL REPORT YOU AND YOU MAY BE EXPELLED!

• You have 50 minutes to complete the exam. Budget your time wisely. SPEND NO MORE THAN 10 MINUTES PER PAGE!

- 1. (11 points)
 - (a) The forces a and b are the pictured. If |a| = 80 N and |b| = 100 N, find the angle the resultant force makes with the positive x-axis.
 (Give your answer rounded to the nearest degree).

(b) Find the center and radius of the sphere with points P(x, y, z) such that the distance from P to A(0, 0, 2) is triple the distance from P to B(0, 0, 0).

- 2. (12 pts)
 - (a) Find the equation for the plane that contains the line x = t, y = 1 2t, z = 4 and the point (3, -1, 5).

(b) Consider the line L_1 that goes through the points (-3, 3, 0) and (-1, 4, 6) and the line L_2 that is given by x = 2 + t, y = 3 - 2t, z = 19 + 7t. These lines are not parallel. Are L_1 and L_2 intersecting or skew? Justify your answer by either finding the point of intersection or showing that there is no intersection point.

- 3. (14 pts)
 - (a) Find a vector \mathbf{v} such that
 - 1. **v** is parallel to the tangent line to $x = 6 \ln(t-4)$, $y = t^2 3t$ at the point (0, 10), and 2. $|\mathbf{v}| = 5$.

(b) The polar curve $r = 2 + \cos(3\theta)$ intersects the negative y-axis at only one point, P. Find the equation for the tangent line to the curve at this point P. (Put your answer in the form $y = m(x - x_0) + y_0$).

- 4. (13 pts) Consider the vector function $\mathbf{r}(t) = \langle t \cos(3t), t^2, t \sin(3t) \rangle$.
 - (a) Describe the surface of motion for the resulting parametric curve.(Eliminate the parameter and give the specific name of the surface of motion).
 - (b) Find the parametric equations for the tangent line at $t = \pi$.

(c) Find the curvature at t = 0.