These problems use the techniques of section 5 except for differentiation and integration of series. Each problem can be derived from the basic series given in Examples 4.2.

(a) In problems 1-6, find the Taylor series for \(f(x) \) based at \(b \). Your answer should have one Sigma (\(\Sigma \)) sign. On some problems you might want to describe the coefficients using a multi-part notation as in Example 5.5.

(b) Then write the solution in expanded form: \(a_0 + a_1(x-b) + a_2(x-b)^2 + \ldots \) where you write at least the first three non-zero terms explicitly.

(c) Then give an interval \(I \) where the Taylor series converges.

Note that there are some hints below.

1. \(f(x) = \cos(3x^2) \) based at \(b = 0 \).
2. \(f(x) = \sin^2(x) \) based at \(b = 0 \).
3. \(f(x) = e^{4x-5} \) based at \(b = 2 \).
4. \(f(x) = \sin(x) \) based at \(b = \frac{\pi}{6} \).
5. \(f(x) = \frac{1}{4x-5} - \frac{1}{3x-2} \) based at \(b = 0 \).
6. \(f(x) = \frac{x}{(2x+1)(3x-1)} \) based at \(b = 1 \).

7. The “\(\sinh \)” and “\(\cosh \)” functions are used, for example, in electrical engineering, and are defined by \(\sinh(x) = (e^x - e^{-x})/2 \), and \(\cosh(x) = (e^x + e^{-x})/2 \). Do questions (a) and (b) above for the function \(h(x) = 2 \sinh(3x) - 4 \cosh(3x) \) based at \(b = 0 \).

8. Find the 6\(^{th} \) degree Taylor polynomial for \(f(x) = \sin(3x-5) \) based at \(b = 0 \), without differentiating.

Hints:
Change the base from \(b \) to \(0 \) by substituting \(u = x - b \).
Be sure that the terms in your answers are numbers (coefficients) times powers of \(x - b \).
Use the double angle formula in problem 2.
Use partial fractions in problem 6.
Use the addition formulae for \(\sin(A \pm B) \) in problems 4 and 8.