1. (6 points per part)
(a) Find parametric equations for the line of intersection of the planes $2 x-y+3 z+4=0$ and $-x+y-z=0$.

(b) Find the intersection point of the line you found in part (a) with the plane $x+2 y+z=12$.

2. (4 points per part) Consider the curve given by the position function $\mathbf{r}_{1}(t)=\left\langle\ln (t), t^{2}+5,3 t\right\rangle$ for $t>0$.
DERIV (a) Find the curvature at $t=1$.
$\left.\begin{array}{c}\text { cross } \\ +2 \\ \text { ilenjth }\end{array}\right\}$

> FORmULA

ASIDE: SAME AS

$$
\frac{1}{14} \sqrt{\frac{61}{14}}=\sqrt{\frac{61}{2+44}} \kappa(1)=\frac{\sqrt{61}}{14^{3 / 2}}
$$

(b) Find the (x, y, z) point on the curve at which the tangent line is orthogonal to the plane

WANT POINT ON CURVE WHEN $t=2$

$$
\Rightarrow \vec{r}_{1}^{\prime}(2)=\left\langle\ln (2),(2)^{2}+5,3(2)\right\rangle
$$

$$
(x, y, z)=(\ln (2), 9,6)
$$

(c) Find the acute angle of intersection of $\mathbf{r}_{1}(t)$ with the curve $\mathbf{r}_{2}(u)=\left\langle 0, u^{3}-u, \sqrt{u^{2}+5}\right\rangle$.
(Give your answer rounded to the nearest degree.)
$+2\{$ INTER SECTION: $(0 \ln (t)=0 \xrightarrow{C} t=1$
$\left.\begin{array}{c}\text { F nd pi ns } \\ n=2\end{array}\right\}$

$$
\begin{aligned}
& \text { (3) } \quad t^{+5}=\sqrt{u^{2}+5} \rightarrow 3=\sqrt{u^{2}+5}
\end{aligned}
$$

\qquad degrees

$$
\begin{aligned}
& +2\left\{\begin{array}{l}
\vec{r}_{1}^{\prime}(1)=\langle 1,2,3\rangle \\
\vec{r}_{2}^{\prime}(u)=\left\langle 0,3 u^{2}-1, \frac{2 u}{2 \sqrt{u^{2}+5}}\right\rangle
\end{array}\right. \\
& \Rightarrow a=u^{2}+5 \\
& \begin{array}{l}
4=u^{2}+5 \\
4
\end{array} \rightarrow u \geqslant<-2 \\
& \theta=\cos ^{-1}\left(\frac{22+2}{\sqrt{14} \sqrt{121+4 / 9}}\right) \approx 54.4053
\end{aligned}
$$

3. (6 points per part) Consider the function $f(x, y)=x^{2}+x y^{2}-y$.
(a) Find all the saddle point (s) of f in \mathbb{R}^{2}. Justify your answer.

$$
\begin{aligned}
& \quad f_{x}=2 x+y^{2}=0 \Rightarrow 2 x=-y^{2} \\
& f_{y}=2 x y-1=0 \longleftrightarrow-y^{3}-1=0 \Rightarrow \begin{array}{l}
y=-1 \quad \text { cr.p+ }\left(-\frac{1}{2},-1\right) \\
x=-\frac{1}{2}
\end{array} \\
& f_{x x}=2 \\
& f_{y y}=2 x \quad D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=4 x-(2 y)^{2} \\
& f_{x y}=2 y \quad D\left(-\frac{1}{2},-1\right)=-2-4<0 \Rightarrow \text { saddle p+ }
\end{aligned}
$$

(b) Let D be the closed region bounded by $x=y^{2}$ and $x=1$. Find the absolute maximum and absolute minimum values of the function f on the region D, and the points where these extrema occur.
From (a), f has or $p+$ (a $\left(-\frac{1}{2},-1\right)$, which is not in D. On the boundary of D :

- parabola $x=y^{2}=f(x, y)=f\left(y^{2}, y\right)=y^{4}+y^{4}-y$

$$
\begin{aligned}
& g_{1}(y)=2 y^{4}-y, \quad y \in[-1,1] \\
& g_{1}^{\prime}(y)=8 y^{3}-1=0 \Rightarrow y=\frac{1}{2}, \\
& f\left(\frac{1}{4}, \frac{1}{2}\right)=g_{1}\left(\frac{1}{2}\right)=\frac{1}{8}-\frac{1}{2}=-\frac{3}{8} \\
& f(1,1)=g_{1}(1)=2-1=1 \\
& f(1,-1)=g_{1}(-1)=2+1=3
\end{aligned}
$$

- line $x=1 \quad f(x, y)=f(1, y)=1+y^{2}-y$

$$
\begin{aligned}
& g_{2}(y)=1+y^{2}-y \quad y \in[-1,1] \text { (end pts checked) } \\
& g_{2}^{\prime}(y)=2 y-1=0 \Rightarrow y=\frac{1}{2}, \\
& f\left(1, \frac{1}{2}\right)=g_{2}\left(\frac{1}{2}\right)=\frac{3}{4}
\end{aligned}
$$

Absolute (global) maximum on $D: f(1,-1)=3$
Absolute (global) minimum on $D: f\left(\frac{1}{4}, \frac{1}{2}\right)=-\frac{3}{8}$
4. (12 points) Consider the surface $x^{2}-(y+1)^{2}-3 z^{2}=2$.

Find the points) on the surface that are closest to the point $A(0,3,1)$.
For full credit, you must show work to justify your answer.
minimize: $d=\sqrt{(x-0)^{2}+(y-3)^{2}+(z-1)^{2}}$
constraint: $x^{2}-(y+1)^{2}-3 z^{2}=2$

$$
\Rightarrow x^{2}=2+(y+1)^{2}+3 z^{2}
$$

\int substitute

$$
\begin{aligned}
& f(x, y, z)=d^{2}=x^{2}+(y-3)^{2}+(z-1)^{2} \\
& g(y, z)=2+(y+1)^{2}+3 z^{2}+(y-3)^{2}+(z-1)^{2}
\end{aligned}
$$

Since $(y, z) \in \mathbb{R}^{2}$ on the surface. domain of $g(y, z)$ has no boundary. The abs. min must occur at critical pt

$$
\begin{array}{r}
g_{y}=2(y+1)+2(y-3)=4 y-4=0 \Rightarrow y=1 \\
g_{z}=6 z+2(z-1)=8 z-2=0 \Rightarrow z=\frac{1}{4} \\
x^{2}=2+(y+1)^{2}+3 z^{2} \\
=2+4+\frac{3}{16}=\frac{99}{16} \\
\Rightarrow x= \pm \frac{\sqrt{99}}{4}
\end{array}
$$

Closest points): $\left(\pm \frac{\sqrt{99}}{4}, 1, \frac{1}{4}\right)$
5. (6 points per part) The pats of this question are mot related.
(a) The region D is bounded above by the curve $y=\frac{1}{x}$, below by the line $y=\frac{1}{2}(x-1)$ and to left by the line $x=1$.
Set up the integral $\iint_{D} f(x, y) d A$ using two different orders of integration.

$$
\begin{aligned}
& \frac{1}{2}(x-1)=\frac{1}{x} \rightarrow x^{2}-x=2 \\
& x^{2}-x-2=0 \\
&(x-2)(x+1)=0 \\
& x=2, x=-1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} \frac{2}{3} x^{3 / 2}-\left.x y^{2}\right|_{y^{4}} ^{\sqrt{y^{4}}} \\
= & d y=\int_{0}^{1 / 2}-\left(\frac{2}{3} y^{3 / 4}-y^{5 / 2}\right)-\left(\frac{2}{3} y^{6}-y^{6}\right) d y \\
= & \frac{2}{3} \frac{4}{7} y^{7 / 4}-\frac{2}{7} y^{7 / 2}+\left.\frac{1}{3} \frac{1}{7} y^{7}\right|_{0} ^{1}=\frac{8}{21}-\frac{2}{7}+\frac{1}{21}=\frac{8-6+1}{21}=\frac{3}{21}=\frac{1}{7}
\end{aligned}
$$

6. (12 points) Find the volume of the region that is inside the ellipsoid $x^{2}+y^{2}+4 z^{2}=25$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.

$$
\begin{gathered}
\left(\sqrt{x^{2}+y^{2}}\right)^{2}=\frac{-x^{2}-y^{2}+25}{4} \\
4 x^{2}+4 y^{2}+x^{2}+y^{2}=25 \\
x^{2}+y^{2}=5=(\sqrt{5})^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \int_{x^{2}+y^{2} \leq 5} \frac{\sqrt{25-x^{2}-y^{2}}}{2}-\sqrt{x^{2}+y^{2}} d A \\
= & \int_{0}^{2 \pi} \int_{0}^{\sqrt{5}}\left(\frac{\sqrt{25-r^{2}}}{2}-r\right) r d r d \theta \\
= & 2 \pi\left[-\frac{1}{6}\left(25-r^{2}\right)^{3 / 2}-\left.\frac{r^{3}}{3}\right|_{0} ^{\sqrt{5}}\right] \\
= & 2 \pi\left[-\frac{1}{6}(25-5)^{3 / 2}-\frac{5 \sqrt{5}}{3}+\frac{1}{6} \cdot 5^{3 / 2}+0\right] \\
= & 2 \pi\left[-\frac{1}{6} \cdot 8 \cdot 5 \sqrt{5}-\frac{5 \sqrt{5}}{3}+\frac{125}{6}\right]=2 \pi\left[-\frac{25 \sqrt{5}}{3}+\frac{125}{6}\right] \\
& {\left[\begin{array}{l}
\frac{\pi}{3}[125-50 \sqrt{5}]
\end{array}\right.} \\
= & =\frac{25 \pi}{3}[5-2 \sqrt{5}]
\end{aligned}
$$

7. Let $f(x)=\sqrt{(2 x+1)^{3}}$.
(a) (6 points) Find the second Taylor polynomial $T_{2}(x)$ for f based at $b=4$.

$$
\begin{array}{ll}
f(x)=(2 x+1)^{3 / 2} & f(4)=27 \\
f^{\prime}(x)=3(2 x+1)^{1 / 2} & f^{\prime}(4)=9 \\
f^{\prime \prime}(x)=3(2 x+1)^{1 / 2} & f^{\prime}(4)=1
\end{array}
$$

$$
T_{2}(x)=27+9(x-4)+\frac{1}{2}(x-4)^{2}
$$

(b) (3 points) Use your answer to part (a) to approximate $\sqrt{9.1^{3}}$.

$$
\begin{aligned}
& \sqrt{9.1^{3}}=\sqrt{(2(4.05)+1)^{3}} \approx T_{2}(4.05)=27+9(.05)+\frac{1}{2}(.05)^{2} \\
& \begin{array}{l}
9.1=2 x+1 \\
\\
\quad \begin{array}{l}
4.05
\end{array}
\end{array} \quad \sqrt{9.1^{3}} 227.45125
\end{aligned}
$$

(c) (5 points) Use Taylor's inequality to find an upper bound (as sharp as possible) for the error in your approximation in part (b).

$$
\left|f^{\prime \prime \prime}(x)\right|=\left|-3(2 x+1)^{-3 / 2}\right|=\frac{3}{\sqrt{(2 x+1)^{3}}} \text { max when denom. is small }(x=4)
$$

On interval $[4,4.05]$, use $M=\frac{3}{\sqrt{q^{3}}}=\frac{1}{q}$

$$
\left|T_{2}(x)-f(x)\right| \leqslant \frac{1}{6} M|x-4|^{3}=\frac{1}{6} \frac{1}{9}(.05)^{3}=\frac{1}{432000}
$$

Upper bound: \square
8. For this problem, let $f(x)=x \sin \left(x^{4}\right)+\frac{x^{2}}{4-x^{3}}$.
(a) (6 points) Find $T_{10}(x)$, the 10th Taylor polynomial for f based at $b=0$.
(b) (3 points) Find the largest open interval on which the Taylor series for f based at $b=0$ converges.
$\sin x$ converges everywhere, \& no changes from our operations.
$\frac{1}{1-x}$ converges for $-1<x<1$

$$
\begin{array}{ll}
-1<x<1 & -4<x^{3}<1 \\
-1<\frac{x^{3}}{4}<1 & -\sqrt[3]{4}<x<\sqrt[3]{4}
\end{array}
$$

Interval:

$$
x<\sqrt[3]{4}[-\sqrt[3]{4}, \sqrt[3]{4})
$$

(c) (5 points) Find $f^{2024}(0)$. (That is, the 2024th derivative of f at 0 .) Give an exact answer. Look for x^{2024} terms in T. series.

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{8 k+5}}{(2 k+1)!} \rightarrow 8 k+5=2024 \rightarrow 8 k=2019 \rightarrow \text { no } x^{2024} \text { term (no int. } k \text {) } \\
\sum_{k=0}^{\infty} \frac{x^{3 k+2}}{4^{k+1}} \rightarrow 3 k+2=2024 \rightarrow 3 k=2022 \rightarrow k=674 \\
4^{2675}=\frac{x^{2024}}{2024!} \rightarrow \frac{f^{(2024)}(0) x^{2024}}{4^{675}}
\end{gathered}
$$

$$
\begin{aligned}
& \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
& \downarrow x \rightarrow x^{4} \\
& \sin \left(x^{4}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{8 k+4}}{(2 k+1)!} \\
& \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \\
& \frac{1}{4-4 x}=\sum_{k=0}^{\infty} \frac{x^{k}}{4} \\
& \downarrow x \rightarrow \frac{x^{3}}{4} \\
& \downarrow \cdot x \\
& x \sin \left(x^{4}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{8 k+5}}{(2 k+1)!} \\
& \frac{1}{4-x^{3}}=\sum_{k=0}^{\infty} \frac{x^{3 k}}{4^{k+1}} \\
& \cdot x^{2} \longrightarrow \sum_{k=0}^{\infty} \frac{x^{3 k+2}}{y^{k+1}} \\
& =\underbrace{\frac{x^{2}}{4}+\frac{x^{5}}{16}+\frac{x^{8}}{64}}+\frac{x^{11}}{256}+\cdots \\
& T_{10}(x)=\text { sum of terms if degree } \leqslant 10 \\
& =x^{5}-\frac{x^{13}}{6}+\cdots \\
& T_{10}(x)=\frac{x^{2}}{4}+\frac{17}{16} x^{5}+\frac{x^{8}}{64}
\end{aligned}
$$

