1. (a) T; (b) F; (c) T; (d) T; (e) T; (f) F; (g) T; (h) F; (i) F; (j) T

2. (a) No.
 (b) $2x - y = 0$

3. (a) $\kappa(t) = \frac{\sqrt{5}}{(1 + 4\sin^2 t)^{3/2}}$
 (b) $\mathbf{r}(t) = (\sin t, 1 + \cos t, 2 + 2\cos t)$

4. The only critical point is $(e, 1)$. It is a saddle point.

5. $x = 1 + 4t, y = 1 + 5t, z = -1 + 5t$

6. The shortest distance is $\sqrt{\frac{15}{2}}$

7. 44π

8. (a) $T_3(x) = -2 + (x - 1) + 2(x - 1)^2 - \frac{1}{3}(x - 1)^3$
 (b) Many correct answers. Two of the many possibilities:
 I. $|f(x) - T_3(x)| \leq \frac{a^4}{6(1-a)^3}$.
 II. $|f(x) - T_3(x)| \leq \frac{8}{3}a^4$. (Uses the fact that $a \leq \frac{1}{2}$.)
 (c) Many correct answers. Two possibilities based on the answers in (b).
 I. Using the fact that $0 < 1-a < 1$, show that $|f(x) - T_3(x)| \leq \frac{a^4}{6(1-a)^3} < \frac{a^4}{6(1-a)^4}$.
 Then any $a < 0.2177$ will work.
 II. Using the error bound $|f(x) - T_3(x)| \leq \frac{8}{3}a^4$, any $a \leq 0.139$ will work.

9. (a) $\sum_{k=0}^{\infty} \left((-1)^k + \frac{(-2)^k}{k!} \right) x^{2k}$
 (b) $(-1, 1)$
 (c) 1.6000