Your Name
\square

Your Signature
\square
Quiz Section

TA's Name

- CHECK that your exam contains 8 problems on 6 double-sided pages, including this cover sheet. There is one blank page at the front and two blank pages at the back reserved for scratch work or extra space.
- This exam is closed book. You may use one $8 \frac{1}{2} " \times 11$ " sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the back of the first page or either side of the last page and indicate that you have done so. If you still need more room, ask for more scratch paper.
- Do not write within 1 centimeter of the edge of the page.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	

Problem	Total Points	Score
6	12	
7	14	
8	14	
Total	100	

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see first page" below a problem.

1. (4 points per part) Parts (a), (b), and (c) are unrelated.
(a) The two lines $x=1+t, y=t, z=1-2 t$ and $x=1, y=4 t, z=1-3 t$ intersect at the point $(1,0,1)$. Find the equation for the plane containing these two intersecting lines.
equation for plane: \qquad
(b) Find parameteric equations for the line of intersection of the two planes $x+y+z=1$ and $2 x+y-3 z=-3$.
equations for line: \qquad
(c) Find all points of intersection of the line through $(0,0,1)$ and $(3,4,1)$ and the paraboloid $100 z=x^{2}+y^{2}$.
2. (6 points per part) Parts (a) and (b) are unrelated.
(a) Find a vector function for the curve of intersection between the surface $5 x^{2}+y^{2}-z^{2}=4$ and the plane $z=x$.
vector function: \qquad
(b) Find the curvature of $\mathbf{r}(t)=\left\langle t^{3}, t^{2}-1,3 t+7\right\rangle$ at the point $(-8,3,1)$.
3. (6 points per part) For parts (a) and (b), let $f(x, y)=x^{2} y^{2}-4 x^{2}-y^{2}$.
(a) Find all the saddle points of $f(x, y)$.
saddle points: \qquad
(b) Find the equation of the tangent plane to the surface $z=f(x, y)$ at $x=2, y=1$ and use it to approximate $f(2.1,0.8)$.
4. (12 points) Find the absolute maximum and absolute minimum values of the function

$$
f(x, y)=x^{2}-y^{2}+2 y
$$

on the region enclosed by $x=0, y=4$ and $y=x^{2}$.
5. (12 points) Reverse the order of integration and evaluate

$$
\int_{0}^{2} \int_{x / 2}^{1} \frac{x}{y^{3}+1} d y d x
$$

6. (12 points) Let R be the region inside the circle $x^{2}+y^{2}=4 y$, outside the circle $x^{2}+y^{2}=8$, and in the first quadrant (shown below). Evaluate

$$
\iint_{R} \frac{x}{x^{2}+y^{2}} d A
$$

7. For parts (a)-(c), let $f(x)=\ln (2 x-1)$.
(a) (5 points) Find the second Taylor polynomial, $T_{2}(x)$, for $f(x)$ based at $b=1$.

$$
T_{2}(x)=
$$

(b) (4 points) Use your answer to part (a) to approximate $\ln (1.1)$.

$$
\ln (1.1) \approx
$$

\qquad
(c) (5 points) Find an upper bound (as sharp as possible) on the error for your answer from part (b).
\qquad
8. For this problem, you may use the following basic Taylor series:

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}, \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \quad \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \quad \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

(a) (6 points) Find the Taylor series for $f(x)=\int_{0}^{x} e^{2 t^{2}} d t$ based at $b=0$. Express your answer using \sum-notation.

Taylor series: \qquad
(b) (3 points) Find the open interval of convergence for the series you found in (a).

Interval of convergence:
(c) (5 points) Find $f^{(2023)}(0)$, i.e. the $2023^{\text {rd }}$ derivative of f at 0 .

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see last page" below a problem.

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see last page" below a problem.

