1. (12 points) Let $\mathcal{P}$ be the plane given by the equation

$$
-x+y+z=2
$$

The point $Q(2,1,-1)$ is not on the plane $\mathcal{P}$. Let $L_{1}$ be the line through $Q$ and orthogonal to $\mathcal{P}$, and let $R$ be the point of intersection of $L_{1}$ and $\mathcal{P}$. Let $W$ be another point $(-1,3,1)$.

Find parametric equations of the line $L_{2}$ that passes through points $W$ and $R$.

$$
\begin{aligned}
& L_{1} \text { has dircion } \underbrace{\langle-1,1,1\rangle}_{\text {normal velcro of } P} \text { and poses harigh }(3,1,-1) \text {. } \\
& L_{\text {: }} \quad x=2-t \quad \ln \text { tersection of } L \text {, with } P \text { : } \\
& y=1+t \\
& -(2-t)+(1+t)+(-1+t)=2 \\
& z=-1+t \\
& \begin{array}{l}
\downarrow \\
=\left(\frac{2}{3}, \frac{7}{3}, \frac{1}{3}\right)
\end{array} \\
& W=(-1,3,1) \\
& \overrightarrow{R W}=\left\langle\frac{-5}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle \\
& \text { (can use }\langle-5,3,2\rangle \text { as direciin) }
\end{aligned}
$$

$$
\begin{aligned}
L_{2}: x & =-1-5 t \\
y & =3+2 t \\
z & =1+2 t
\end{aligned}
$$

Parametric equations:
2. (6 points per part) Parts (a) and (b) of this question are unrelated.
(a) Find the equation for the quadric surface consisting of all points that are equidistant to the plane $y=3$ and the point $(0,1,2)$. Then identify the quadric surface.

$$
\begin{gathered}
|y-3|=\sqrt{x^{2}+(y-1)^{2}+(z-2)^{2}} \\
(y-3)^{2}=x^{2}+(y-1)^{2}+(z-2)^{2} \\
y^{2}-6 y+9=x^{2}+y^{2}-2 y+1+(z-2)^{2}
\end{gathered}
$$

Equation for surface: $-4(y-2)=x^{2}+(z-2)^{2}$
Name of surface: $\frac{\text { Circular paraboloid }}{\text { (or elliptical) }}$
(b) Let $P$ be the point where $\mathbf{r}(t)=\left\langle t^{2}+t, t^{3}, \frac{-3}{2} t^{2}-2 t\right\rangle$ intersects the plane $y=-8$. Find the curvature of $\mathbf{r}(t)$ at $P$.

$$
\begin{array}{rlr}
\vec{r}^{\prime}(t) & =\left\langle 2 t+1,3 t^{2},-3 t-2\right\rangle & t^{3}=-8 \\
\vec{r}^{\prime \prime}(t) & =\langle 2,6 t-3\rangle & t=-2 \\
\vec{r}^{\prime}(-2) & =\langle-3,12,4\rangle & \\
\vec{r}^{\prime \prime}(-2) & =\langle 2,-12,-3\rangle & \\
\vec{r}^{\prime}(-2) \times \vec{r}^{\prime \prime}(-2) & =\langle 12,-1,12\rangle & \\
\left|\vec{r}^{\prime}(-2)\right| & =\sqrt{9+144+16}=13 & \\
\left|\vec{r}^{\prime}(-2) \times \vec{r}^{\prime \prime}(-2)\right| & =\sqrt{144+1+144}=17 \\
K &
\end{array}
$$

3. (12 points) Find the equation of the plane tangent to the surface

$$
z=x^{2} y-\sqrt{3 x-y}-\frac{x}{y}
$$

at the point $(6,2,65)$. Write your answer in the form $A x+B y+C z=D$.

$$
\begin{aligned}
& \frac{\partial z}{\partial x}= 2 x y-\frac{3}{2 \sqrt{3 x-y}}-\frac{1}{y} \\
& \longrightarrow a+(6,2,65), \frac{\partial z}{\partial x}=24-\frac{3}{8}-\frac{1}{2}=\frac{185}{8} \\
& \frac{\partial z}{\partial y}= x^{2}+\frac{1}{2 \sqrt{3 x-y}}+\frac{x}{y^{2}} \\
& \varphi_{a+}(6,2,65), \frac{\partial z}{\partial y}=36+\frac{1}{8}+\frac{3}{2}=\frac{301}{8} \\
& z= \frac{185}{8}(x-6)+\frac{301}{8}(y-2)+65 \\
& 8 z=185(x-6)+301(y-2)+520
\end{aligned}
$$

4. (12 points) Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and the vertex opposite the origin (i.e. the one marked $P$ in the picture below) on the surface $z=20-x^{2}-y$.

In order to receive full credit, you must show that your answer really is the maximum.

$$
\begin{gathered}
\text { Volume }=x y z \quad z=20-x^{2}-y \\
\downarrow \\
\text { Volume }=f(x, y)=x y\left(20-x^{2}-y\right)
\end{gathered}
$$

Wart abs. max of $f(x, y)=20 x y-x^{3} y-x y^{2}$


$$
\begin{aligned}
& f_{x}(x, y)=20 y-3 x^{2} y-y^{2}=0 \rightarrow y\left(20-3 x^{2}-y\right)=0 \\
& f_{y}(x, y)=20 x-x^{3}-2 x y=0 \rightarrow x\left(20-x^{2}-2 y\right)=0
\end{aligned}
$$

max can't occur at $x=0$ or $y=0$ (volume would $=0$ ),

$$
\frac{\text { so } 20-3 x^{2}-y=0}{-3\left(20-x^{2}-2 y=0\right)}
$$

$$
\begin{gathered}
y=8 \\
20-3 x^{2}-8=0 \rightarrow 12=3 x^{2} \rightarrow x=2 \quad z=20-x^{2}-y=8
\end{gathered}
$$

Only critical point (with nonzero volume) is $x=2, y=8$.
Furthermore, the domain is this region, and the boundary is where

$x, y$, or $z=0$. So the max cant occur on the boundary.
Therefore the orly possible max is when $x=2, y=8, z=8$
$\qquad$
5. (7 points per part) Part (a) and (b) of this question are not related.


$$
\text { Answer }=\frac{1}{5} \ln (33)
$$

(b) Set up (but do not evaluate) an integral for the volume of the solid enclosed by the cylinder $y=x^{2}$ and the planes $y+z=4$ and $z=0$.



Bounds: $-2 \leq x \leq 2$

$$
x^{2} \leq y \leq 4
$$

6. (6 points per part) A lamina $D$ occupies the region in the first quadrant that lies inside the circle $x^{2}+y^{2}=4$ and outside the circle $x^{2}+(y-2)^{2}=4$.
The density at any point is $\rho(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}$.
(a) Find the mass of $D$.


Intersection when $4 \sin \theta=2$


$$
\begin{aligned}
& \text { Mass }=\int_{0}^{\frac{\pi}{6}} \int_{4 s i=\theta}^{2} \frac{d \cos \theta}{t} r d d d \theta=\int_{0}^{\pi / 6}\left(\frac{1}{2} \cos s\right. \\
& \left.=\int_{0}^{\frac{1}{2}}\left(2-8 u^{2}\right) d u=\left(2 u-\frac{8}{3} u^{3}\right)\right]_{0}^{1 / 2}=1-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
\sin \theta & =\frac{1}{2} \\
\theta & =\frac{\pi}{6}
\end{aligned}
$$

$$
=\int_{0}^{\frac{1}{2}}\left(2-8 u^{3}\right) d u=\left(2 u-\frac{8}{3} u^{3}\right)^{1 / 2}=1-\frac{1}{3} \longrightarrow
$$

Mass $=\frac{2}{3}$
(b) Find $\bar{y}$, which is the $y$-coordinate of the center of mass.

$$
\begin{aligned}
& M_{x}=\iint_{D} \frac{x y}{\sqrt{x^{2}+y^{2}}} d A=\int_{0}^{\pi / 6} \int_{4 \sin \theta}^{2} \frac{r^{2} \cos \theta \sin \theta}{f} d d r d \theta \\
&\left.=\int_{0}^{\pi / 6}\left(\frac{1}{3} \sin \theta \cos \theta r^{3}\right)\right]_{r=4 \sin \theta}=\int_{0}^{\pi / 6}\left(\frac{1}{3} \sin \theta \cos \theta\left(8-64 \sin ^{3} \theta\right) d \theta\right. \\
& u=\sin \theta \\
& d u=\cos \theta d \theta \\
&=\left.\int_{0}^{1 / 2} \frac{1}{3} u\left(8-64 u^{3}\right) d u=\frac{1}{3}\left(4 u^{2}-\frac{64}{5} n^{5}\right)\right]_{0}^{1 / 2}=\frac{1}{3}\left(1-\frac{2}{5}\right)=\frac{1}{5} \\
& \bar{y}=\frac{M_{x}}{m}=\frac{\frac{1}{5}}{\frac{2}{3}}-\bar{y}=\frac{3}{10}
\end{aligned}
$$

7. (6 points per part) Let $f(x)=\sin (x-1)+x^{2}+e^{x}$.
(a) Find the second Taylor polynomial $T_{2}(x)$ for $f$ based at $b=1$.

$$
\begin{array}{ll}
f(1)=1+e \\
f^{\prime}(x)=\cos (x-1)+2 x+e^{x} & f^{\prime}(1)=3+e \\
f^{\prime \prime}(x)=-\sin (x-1)+2+e^{x} & f^{\prime \prime}(1)=2+e
\end{array}
$$

$$
\begin{gathered}
T_{2}(x)=(1+e)+(3+e)(x-1)+\frac{1}{2}(2+e)(x-1)^{2} \\
T_{2}(x)=
\end{gathered}
$$

(b) Find an upper bound for $\left|f(x)-T_{2}(x)\right|$ on the interval $\left[\frac{1}{2}, \frac{3}{2}\right]$.

In order to receive credit, you must justify your answer.

$$
f^{\prime \prime \prime}(x)=\underbrace{-\cos (x-1)}_{|\cos (x-1)| \leq 1}+\underbrace{e^{x}} \leq e^{3 / 2} \text { on }\left[\frac{1}{2}, \frac{3}{2}\right]
$$

So one possible $M$ is $1+e^{3 / 2}$.

$$
\left|f(x)-T_{2}(x)\right| \leq \frac{1}{6}\left(1+e^{3 / 2}\right)\left|\frac{3}{2}-1\right|^{3}
$$

$$
\text { Upper bound }=\frac{1}{48}\left(1+e^{3 / 2}\right)
$$

8. For this problem, you may use the following basic Taylor series:

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}, \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \quad \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \quad \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

(a) (6 points) Use the list of Basic Series to find the Taylor series for $f(x)=x^{2} \arctan (-3 x)$ based at $b=0$. (Use $\Sigma$ notation.)

Taylor series:

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k+1} 3^{2 k+1} x^{2 k+3}}{2 k+1}
$$

(b) (3 points) Find the open interval on which the series in part (a) converges.


Interval of convergence:
(c) (5 points) Find $f^{2023}(0)$. (That is, the 2023th derivative of $f$ at 0 .) Give an exact answer. $x^{2023}$ term of Taylor series is where $2 k+3=2023 \rightarrow k=1010$ Term is $\frac{-3^{2021} x^{2023}}{2021}=\frac{f^{(2023)}(0)}{2023!} x^{2023}$

$$
f^{(2023)}(0)=\frac{-3^{2021} \cdot 2023!}{2021}
$$

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad x^{-3 x} \arctan (-3 x)=\sum_{k=0}^{\infty} \frac{(-1)^{k+1} 3^{2 k+1} x^{2 k+1}}{2 k+1} \\
& \begin{array}{l}
\qquad \int_{x \rightarrow-x^{2}}^{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}
\end{array} \\
& \arctan (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2 k+1} \\
& \begin{array}{c}
\downarrow \cdot x^{2} \\
x^{2} \arctan (-3 x)=
\end{array}
\end{aligned}
$$

