1. (4 points per part) For parts (a)-(c), let \mathcal{P} be the plane $8 x-4 y+z=3$.
(a) Find the acute angle between \mathcal{P} and the plane $x=4$.

Normal vector of $P:\langle 8,-4,1\rangle$
Normal vector of $x=4:\langle 1,0,0\rangle$

$$
\underbrace{\langle 8,-4,1\rangle \cdot\langle 1,0,0\rangle}_{8}=\underbrace{\mid\langle 8,-4,1\rangle}_{9} \mid \underbrace{|\langle 1,0,0\rangle|}_{1} \cos (\theta)
$$

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{8}{9}\right) \\
& \approx 0.476 \mathrm{rad} \\
& \approx 27.3^{\circ}
\end{aligned}
$$

(b) Write parametric equations for the line of intersection between \mathcal{P} and the $x z$-plane.

$$
\begin{gathered}
8 x+z=3 \\
z=3-8 x \\
x=t \\
y=0 \\
z=3-8 t
\end{gathered}
$$

(c) Find the point on the plane \mathcal{P} that is closest to $(26,-7,10)$.

Line through $(26,-7,10)$ normal to P :

$$
\begin{aligned}
& x=26+8 t \\
& y=-7-4 t \\
& z=10+t
\end{aligned}
$$ $I_{n \text { nersection }} w / P$:

$$
8(26+8 \tau)-4(-7-4 t)+10+t=3
$$

$$
208+64 t+28+16 t+10+t=3
$$

$$
81 t=-243
$$

$$
t=-3 \bigcirc \downarrow
$$

2. (9 points) The acceleration of a particle at time t is given by the vector function

$$
\mathbf{a}(t)=\langle 2 t, 4,45 \sqrt{t}\rangle \mathrm{m} / \mathrm{s}^{2}
$$

The particle is in the same position at time $t=1$ as it is at time $t=4$.
What is the speed of the particle at time $t=0$?

$$
\begin{gathered}
\vec{V}(t)=\left\langle t^{2}+C_{1}, 4 \tau+C_{2}, 30 t^{3 / 2}+C_{3}\right\rangle \\
\vec{r}(\tau)=\left\langle\frac{1}{3} t^{3}+C_{1} t+C_{4}, 2 t^{2}+C_{2} t+C_{5}, 12 t^{5 / 2}+C_{3} t+C_{6}\right\rangle \\
\vec{r}(1)=\left\langle\frac{1}{3}+C_{1}+C_{4}, 2+C_{2}+C_{5}, 12+C_{3}+C_{6}\right\rangle \\
\vec{r}(4)=\left\langle\frac{64}{3}+4 C_{1}+C_{4}, 32+4 C_{2}+C_{5}, 384+4 C_{3}+C_{6}\right\rangle \\
\downarrow \\
\begin{array}{c}
\frac{1}{3}+C_{1}=\frac{64}{3}+4 C_{1} \\
\\
-3 C_{1}=21
\end{array} \quad-3+C_{2}=32+4 C_{2} \quad 12+C_{3}=384+4 C_{3} \\
C_{1}=-7 \quad C_{2}=-10 \quad-3 C_{3}=372 \\
\vec{v}(0)=\left\langle C_{1}, C_{2}, C_{3}\right\rangle=\langle-7,-10,-124\rangle \\
\text { speed }=\mid\langle-7,-10,-124\rangle=\sqrt{7^{2}+10^{2}+124^{2}}=\sqrt{15525} \mathrm{~m} / \mathrm{s} \\
\approx 124.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

3. (11 points) Let $f(x, y)=2 x^{2}-2 x y+y^{2}-3 y$.
(a) Find and classify the critical points of f.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ f _ { x } = 4 x - 2 y = 0 } \\
{ f _ { y } = - 2 x + 2 y - 3 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
y=2 x \\
-2 x+2(2 x)-3=0 \Rightarrow 2 x=3 \Rightarrow x=3 / 2
\end{array}\right.\right. \\
& \text { Only one CP: }(3 / 2,3)
\end{aligned} \begin{aligned}
& D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=(4)(2)-(-2)^{2}=8-4=4>0 \Rightarrow \text { local optima } \\
& f_{x x}=4>0 \Rightarrow \text { Local minimum } .
\end{aligned}
$$

(b) Find the global minimum and global maximum of f on the square $0 \leq x \leq 4,0 \leq y \leq 4$.

Candidates:

(J) CP's inside the region: $(3 / 2,3)$

$$
\begin{aligned}
& C P^{\prime} \text { s inside the region: }(3 / 2,3) \\
& \left.t=2(3 / 2)^{2}-2(3 / 2)(3)+36-3 / 5\right)=9 / 2-18 / 2=-9 / 2
\end{aligned}
$$

(II) $C P^{\prime} s$ on boundary
(1) $x=0$: $g_{1}(y)=y^{2}-3 y \Rightarrow g_{1}^{\prime}(y)=2 y-3 \Rightarrow C P y=3 / 2 \leq 4$ $(0 \leq y \leq 4)$ so candidate $(0,3 / 2) w / z=g(3 / 2)=9 / 4-9 / 2=-9 / 4$
(2) $x=4$: $\quad g_{2}(y)=y^{2}-11 y+32 z g_{2}^{\prime}(y)=2 y-11 \quad \rightarrow y=\frac{11}{2}>4 x$
($0 \leq y \leq 4)$ discard: no $C P$ within domain $0 \leq y \leq 4$.
$(3) y=0: g_{3}(x)=2 x^{2} \Rightarrow g_{3}^{\prime}(x)=4 x \Rightarrow(P:(0,0)$ Candidate $(0,0) \Rightarrow z=0 \quad \frac{8}{2(4)-8(2)+4}$
(4) $y=4: \begin{aligned} & g_{4}(x)=2 x^{2}-8 x+16-12=2 x^{2}-8 x+4 \quad 2(4)-8(2)+4 \\ & g_{4}^{\prime}(x)=4 x-8 \Rightarrow C P: x=2 \Rightarrow \text { candidate }(2,4)\end{aligned}$
corners: $(0,0) \rightarrow z=0 \quad(4,0) \rightarrow z=2(4)^{2}=32$
$(0,4) \rightarrow z=16-12=4 \quad(4,4) \rightarrow z=2(y, x-2(14)+423(4)=4$
Answer: global max $=32(0(4,0))$ global min $=-\frac{9}{2}=-4 \cdot 5$ at $\left(\frac{3}{2}, 3\right)$
(c) You do not need to explain your work on this part.

Does f have a global minimum on \mathbf{R}^{2} ? Yes No
Does f have a global maximum on \mathbf{R}^{2} ? Yes No
4. (6 points per part) Evaluate the following double integrals:

$$
\text { (a) } \begin{aligned}
& \int_{0}^{1} \int_{0}^{\arctan (x)} \frac{1}{1-\tan (y)} d y d x \\
= & \int_{0}^{\pi / 4} \int_{\tan y}^{1} \frac{1}{1-\tan y} d x d y \\
= & \int_{0}^{\pi / 4} \frac{1}{1-\tan y}\left(\left.x\right|_{\tan y} ^{1}\right) d y \\
= & \int_{0}^{\pi / 4} \frac{1}{1-\tan y}(x-\tan y) d y \\
= & \left.y\right|_{0} ^{\pi / 4}=\frac{\pi}{4}
\end{aligned}
$$

Domain region: $0 \leq x \leq 1$

$$
0 \leq y \leq \arctan x
$$

Reversing: $0 \leq y \leq \pi / 4$ \& $\tan y \leq x \leq 1$

(b) $\iint_{D} \cos \left(\sqrt{x^{2}+y^{2}}\right) d A$,
where D is the region in the $x y$-plane given by $x^{2}+y^{2} \leq 4, x \geq 0$, and $y \geq 0$.

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \int_{0}^{2} \cos (r) r d r d \theta \quad \text { (in polar coordinates.) } \\
& =\underbrace{\left(\int_{0}^{\pi / 2} d \theta\right)}_{=} \underbrace{\left.\left(\left.r \sin r\right|_{0} ^{2}-\int_{0}^{2} \sin r d r\right]^{2} r \cos r d r\right)}_{\frac{\pi}{2}} \\
& \text { Intepation by Parts } \\
& u=r \quad d v=\cos r d r \\
& d u=d r \quad v=\sin r \\
& =\frac{\pi}{2}\left[2 \sin 2+\left.\cos \right|_{0} ^{2}\right] \\
& =\frac{\pi}{2}[2 \sin 2+\cos 2-1] \quad(\cong 0.63)
\end{aligned}
$$

5. (10 points) In this problem, a denotes a positive constant. A flat plate occupies the part of the disk $x^{2}+y^{2} \leq a^{2}$ that lies in the first quadrant. The plate has density $\rho(x, y)=x y^{2}$. The y-coordinate of the center of mass of the plate is $\bar{y}=1$.

Find a.
The mass of the plate is:

$$
\begin{aligned}
m & =\iint_{D} \rho(x, y) d A=\iint_{\Delta} x y^{2} d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{a} r \cos \theta(r \sin \theta)^{2} r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{a} r^{4} \cos \theta \sin ^{2} \theta d r d \theta=\underbrace{\left(\int_{0}^{\pi / 2} \cos \theta(\sin \theta)^{2} d \theta\right)}_{(a, v)}\left(\int_{0}^{a} r^{4} d \theta\right) \\
& =\left.\left(\int_{0}^{1} u^{2} d u\right)\left(\frac{1}{5} r^{5}\right)\right|_{r=0} ^{r=a}=\left(\left.\frac{1}{3} u^{3}\right|_{0} ^{1}\right)\left(\frac{1}{5} a^{5}\right) \\
& =\frac{1}{15} a^{5}
\end{aligned}
$$

The y-coordinate is: $\bar{y}=\frac{1}{m} \iint_{\Delta} y f_{(x, y)} d A=\frac{15}{a^{5}} \iint_{\Delta} x y^{3} d A$ In polar coordinates:

$$
\begin{aligned}
\bar{y} & =\frac{15}{a^{5}} \int_{0}^{\pi / 2} \int_{0}^{a}(r \cos \theta)(r \sin \theta)^{3} r d r d \theta \\
& =\frac{\sqrt{5}}{a^{5}}(\int_{0}^{\pi / 2} \underbrace{(\sin \theta)^{3}}_{u^{3}} \underbrace{\cos \theta d \theta}_{d u})\left(\int_{0}^{a} r^{5} d r\right) \\
& =\frac{15}{a^{5}}\left(\int_{0}^{1} u^{3} d u\right)\left(\int_{0}^{a} r^{5} d r\right)=\left.\frac{15}{a^{5}}\left(\left.\frac{1}{4} u^{4}\right|_{0} ^{1}\right)\left(\frac{1}{6} r^{6}\right)\right|_{0} ^{a} \\
& =\frac{515}{a^{5}}\left(\frac{1}{4}\right)\left(\frac{a^{6}}{\frac{6}{2}}\right)=\frac{5 a}{8}
\end{aligned}
$$

We need: $\bar{y}=1$ so $\frac{5 a}{8}=1$

$$
\therefore a=8 / 5
$$

6. (2 points per part) Match each of the following area integrals with one of the regions (A)-(F) below, corresponding to its domain of integration. You do not need to justify. (Do NOT compute the integrals)
(a) $\int_{0}^{10} \int_{0}^{\pi / 4} r d \theta d r$ matches region: \boldsymbol{B}
(b) $\int_{0}^{10} \int_{0}^{y} d x d y$ matches region: \bar{F}
(c) $\int_{0}^{\pi / 2} \int_{\left(\frac{20}{\pi}\right) \theta}^{10} r d r d \theta$ matches region: \square
(d) $\int_{0}^{10} \int_{x}^{10} d y d x$ matches region:

7. (7 points per part) For both part (a) and (b), let $f(x)=\sqrt{(x-1)^{5}}-\cos (x-2)$.
(a) Find the second Taylor polynomial, $T_{2}(x)$, for $f(x)$ based at $b=2$.

$$
\begin{array}{ll}
f(x)=\sqrt{(x-1)^{5}}-\cos (x-2) & f(2)=0 \\
f^{\prime}(x)=\frac{5}{2} \sqrt{(x-1)^{3}}+\sin (x-2) & f^{\prime}(2)=\frac{5}{2} \\
f^{\prime \prime}(x)=\frac{5}{4} \sqrt{x-1}+\cos (x-2) & f^{\prime \prime}(2)=\frac{19}{4} \\
T_{2}(x)=\frac{5}{2}(x-2)+\frac{19}{8}(x-2)^{2}
\end{array}
$$

(b) Use Taylor's inequality to find an upper bound (as sharp as possible) for $\left|f(x)-T_{2}(x)\right|$ on the interval [1.8, 2.2].

$$
\begin{aligned}
& \text { So }\left|T_{2}(x)-f(x)\right| \leq \frac{1}{6}(2.295)|0.2|^{3} \approx 0.00306
\end{aligned}
$$

8. (14 points) For this problem, you may use the following basic Taylor series:

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}, \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \quad \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \quad \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

(a) Find the Taylor series for $f(x)=\frac{x}{5+x^{2}}$ based at $b=0$. Express your answer using \sum-notation.

$$
\begin{aligned}
\frac{x}{5+x^{2}}=\frac{x}{5}\left(\frac{1}{1-\left(-\frac{x^{2}}{5}\right)}\right) & =\frac{x}{5} \sum_{k=0}^{\infty}\left(-\frac{x^{2}}{5}\right)^{k} \\
& =\frac{x}{5} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{5^{k}} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{5^{k+1}} x^{2 k+1}
\end{aligned}
$$

(b) Find the open interval of convergence for the series you found in (a).

$$
\begin{aligned}
\left|\frac{x^{2}}{5}\right|<1 & \Leftrightarrow \\
& \Leftrightarrow>-\sqrt{5}<x<\sqrt{5}
\end{aligned}
$$

(c) Use the Taylor series you found in (a) to find the Taylor series for $g(x)=\ln \left(5+x^{2}\right)$

$$
\begin{aligned}
& g^{\prime}(x)=\frac{2 x}{5+x^{2}}=\sum_{k=0}^{\infty} \frac{2(-1)^{k}}{5^{k+1}} x^{2 k+1} \text { by }(a) \\
& \therefore g(x)=\int\left(\sum_{k=0}^{\infty} \frac{2(-1)^{k}}{5^{k+1}} x^{2 k+1}\right) d x=\sum_{k=0}^{\infty} \frac{2(-1)^{k} \frac{x^{2 k+2}}{5^{k+1}} \frac{2 k+2}{k+1}}{} \begin{aligned}
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1) 5^{k+1}} x^{2 k+2}+C=\frac{1}{5} x^{2}-\frac{1}{10} x^{4}+\frac{1}{75} x^{6}+\cdots+C \\
g(0) & =\ln 5
\end{aligned} \\
&=C \\
& g(x)=\ln 5+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1) 5^{k+1}} x^{2 k+2}
\end{aligned}
$$

9. (10 points) Let $f(x, y)=100-x^{2}-y^{2}+x y$.
(a) Find a normal vector to the tangent plane to the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. (Your answer will depend on x_{0} and y_{0}.)

$$
\begin{aligned}
& f_{x}=-2 x+y, \quad f_{y}=-2 y+x \\
& \vec{n}=\left\langle-2 x_{0}+y_{0},-2 y_{0}+x_{0},-1\right\rangle
\end{aligned}
$$

(b) Find a point P on the portion of the graph of f above the region $-2 \leq x \leq 2,-2 \leq y \leq 2$ where the tangent plane at P intersects the $x y$-plane at the largest possible (acute) angle.
The $\Varangle g$ intersection between the tangent plane at P and the $x y$-plane $=$ the $\left\langle\theta\right.$ between $\vec{n}=\left\langle-2 x_{0}+y_{0},-2 y_{0}+x_{0},-1\right\rangle \&-\vec{k}=\langle 0,0,-1\rangle$ $\cos \theta=\frac{\vec{n} \cdot(-\vec{k})}{|\vec{n}||\vec{k}|}=\frac{1}{|\vec{n}|}$

Largest possible (acute) $\Varangle \theta$ means smallest possible (positix) $\cos \theta$ which, in furn, mean largest possible $|\vec{n}|, ~ \sigma$, simpler, $|\vec{n}|^{2}$ So: ne need to find the point $P=(x, y, z, z 0)$ in the square $-2 \leq x, y \leq 2$ that maximizes $N(x, y)=|\vec{n}|^{2}=(-2 x+y)^{2}+(-2 y+x)^{2}+1$
$N(x, y)=4 x^{2}-4 x y+y^{2}+4 y^{2}-4 x y+x^{2}+1=5 x^{2}+5 y^{2}-8 x y+1$
(1) CP's: $\left\{\left.\begin{array}{l}N_{x}=10 x-8 y=0 \Rightarrow y=\frac{10 x}{8}=\frac{5 x}{4} \\ N_{y}=10 y-8 x=0 \Rightarrow 10\left(\frac{x}{4}\right)-8 x=0 \Rightarrow x=0 \Rightarrow y=0\end{array} \right\rvert\, \begin{array}{l}\text { (only }(0,0) \\ N(0,0)=1\end{array}\right.$
(2) Boundary: (i) $x=2: \quad g_{1}(y)=20+5 y^{2}-16 y+1=5 y^{2}-16 y+21$ (2,1.6) $g_{1}^{\prime}(y)=10 y-16 \Longrightarrow y=1.6$
(ii) $x=-2: \quad g_{2}(y)=20+5 y^{2}+16 y+1=5 y^{2}+16 y+21$
$\Rightarrow C P(-2,-1.6) \mathrm{w} / z(-2,-1.6)=g_{2}(-1.6)=8.2$
(iii) \& (iv) $y= \pm 2$: by symmetry: $(1.6,2) \&(-1.6,-2) w / z=8.2$

Corners: $\begin{aligned} N(2,2)=20+20-8(2)(2)+1=9=M(-2,-2) \\ M(-2,2)=20+20+8(2)(2)+1=73=M(2,-2)\end{aligned}$
Maximum at $P=(-2,2, f(2,-2))=(-2,2,88)$ OR $(2,-2,88) \leftarrow$ ANSWER

