Your Name
\square
Student ID \#
\square
Professor's Name

Your Signature
\square

Quiz Section

TA's Name

- CHECK that your exam contains 9 problems on 7 double-sided pages, including this cover sheet. There is one blank page at the front and three blank pages at the back reserved for scratch work or extra space.
- This exam is closed book. You may use one $8 \frac{1}{2} " \times 11 "$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the back of the first page or either side of the last page and indicate that you have done so. If you still need more room, ask for more scratch paper.
- Do not write within 1 centimeter of the edge of the page.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	9	
3	11	
4	12	
5	10	

Problem	Total Points	Score
6	8	
7	14	
8	14	
9	10	
Total	100	

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see first page" below a problem.

1. (4 points per part) For parts (a)-(c), let \mathcal{P} be the plane $8 x-4 y+z=3$.
(a) Find the acute angle between \mathcal{P} and the plane $x=4$.
(b) Write parametric equations for the line of intersection between \mathcal{P} and the $x z$-plane.
(c) Find the point on the plane \mathcal{P} that is closest to $(26,-7,10)$.
2. (9 points) The acceleration of a particle at time t is given by the vector function

$$
\mathbf{a}(t)=\langle 2 t, 4,45 \sqrt{t}\rangle \mathrm{m} / \mathrm{s}^{2} .
$$

The particle is in the same position at time $t=1$ as it is at time $t=4$.
What is the speed of the particle at time $t=0$?
3. (11 points) Let $f(x, y)=2 x^{2}-2 x y+y^{2}-3 y$.
(a) Find and classify the critical points of f.
(b) Find the global minimum and global maximum of f on the square $0 \leq x \leq 4,0 \leq y \leq 4$.
(c) You do not need to explain your work on this part.

Does f have a global minimum on \mathbf{R}^{2} ? Yes No

Does f have a global maximum on \mathbf{R}^{2} ? Yes No
4. (6 points per part) Evaluate the following double integrals:
(a) $\int_{0}^{1} \int_{0}^{\arctan (x)} \frac{1}{1-\tan (y)} d y d x$
(b) $\iint_{D} \cos \left(\sqrt{x^{2}+y^{2}}\right) d A$, where D is the region in the $x y$-plane given by $x^{2}+y^{2} \leq 4, x \geq 0$, and $y \geq 0$.
5. (10 points) In this problem, a denotes a positive constant. A flat plate occupies the part of the disk $x^{2}+y^{2} \leq a^{2}$ that lies in the first quadrant. The plate has density $\rho(x, y)=x y^{2}$. The y-coordinate of the center of mass of the plate is $\bar{y}=1$.

Find a.
6. (2 points per part) Match each of the following area integrals with one of the regions (A)-(F) below, corresponding to its domain of integration. You do not need to justify. (Do NOT compute the integrals)
(a) $\int_{0}^{10} \int_{0}^{\pi / 4} r d \theta d r$ matches region: \qquad
(b) $\int_{0}^{10} \int_{0}^{y} d x d y$ matches region: \qquad
(c) $\int_{0}^{\pi / 2} \int_{\left(\frac{20}{\pi}\right) \theta}^{10} r d r d \theta$ matches region: \qquad
(d) $\int_{0}^{10} \int_{x}^{10} d y d x$ matches region: \qquad

7. (7 points per part) For both part (a) and (b), let $f(x)=\sqrt{(x-1)^{5}}-\cos (x-2)$.
(a) Find the second Taylor polynomial, $T_{2}(x)$, for $f(x)$ based at $b=2$.
(b) Use Taylor's inequality to find an upper bound (as sharp as possible) for $\left|f(x)-T_{2}(x)\right|$ on the interval [1.8, 2.2].
8. (14 points) For this problem, you may use the following basic Taylor series:

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}, \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \quad \sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \quad \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

(a) Find the Taylor series for $f(x)=\frac{x}{5+x^{2}}$ based at $b=0$. Express your answer using \sum-notation.
(b) Find the open interval of convergence for the series you found in (a).
(c) Use the Taylor series you found in (a) to find the Taylor series for $g(x)=\ln \left(5+x^{2}\right)$ based at $b=0$.
9. (10 points) Let $f(x, y)=100-x^{2}-y^{2}+x y$.
(a) Find a normal vector to the tangent plane to the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. (Your answer will depend on x_{0} and y_{0}.)
(b) Find a point P on the portion of the graph of f above the region $-2 \leq x \leq 2,-2 \leq y \leq 2$ where the tangent plane at P intersects the $x y$-plane at the largest possible (acute) angle.

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see last page" below a problem.

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see last page" below a problem.

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see last page" below a problem.

