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1. (8 points) Let u, v, and w be three-dimensional head-to-tail unit vectors in the zy-plane,
forming an equilateral triangle, as pictured. Compute the following:

(There is enough information provided to compute a specific value or vector as an answer to

each of these questions.)

@ uu— |3 :m

) u-v=|a] |7 cosO=

(C) u+v-+w= (S.MCQ TZ\?, ‘erm a cyglt)

=L

- |
2 2

l: l l S;n(%}':%
= r% S'm(%

2. (6 points) Answer the following (unrelated) questions. No need to justify your answer.

(a) Give an example of the equation of a plane that is perpendicular to the plane z = z — y.

Write your answer in the form Ax + By + Cz = D.
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(b) Which of the following is a level curve (i.e. a trace when z = k, a constant) for the
surface 22 — y? + 2z = 0?7 Circle all that apply.
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(c) One of these is the graph of r = 5cos(f) — cos(560). Circle it.
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3. (12 points) Consider the helix-like curve r(t) = <cos(t), sin(t), 3 > , t>0.
(a) Write a Cartesian equation for a surface that contains this curve.
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(b) Compute the arc length of this curve from ¢ = 0 to t = a, where a is an arbitrary positive

constant.
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(c) Compute the curvature (t) of this curve, and determine lim r(t).
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4. (12 points) Find and classify all critical points of the function f(z,y) = 423 — 2z + 2zy — y*.
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5. (12 points) Let z = f(x,y) be the function defined by the implicit equation
2/ 2 et 4y =0.

(a) Compute % and g—; at the point (3,4, —1).
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(b) Use linear approlximation to esti‘mate the value of f(3.07,4.12).
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6. (13 points) Suppose f(z,y) is continuous and D is a region in the zy-plane such that

/[ raia- // F(e,y) da dy.

(a) Sketch D and reverse the order of integration.
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(b) Let D be the region described above and suppose a lamina in the shape of D has variable
density p(z,y) = —12z. Compute the mass of the lamina.

(You do not need to use the same Setup from part (a) to compute this.)
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7. (12 points) Use polar coordinates to find the volume of the solid below the cone /22 4 y? = 5z,
above the xy-plane, and inside the cylinder 22 + 3% = 10y
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8. (13 pts) For ALL parts below, let f(z) = — 2e% and b= 0.

(a) Give the Taylor series for f(x) based at b.
Give your final answer in Sigma notation using one Sigma sign.
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(b) Give the open interval of convergence for your answer in part (a).
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(c) Use the first three nonzero terms of the Taylor series to estimate the value of f (lio)
Give your final answer to three digits after the decimal.
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9. (12 pts) For ALL parts below, consider Taylor polynomials for g(z) = ¢®/? based at b = 1.

(a) Find the thlrd Taylor polynomial, T3(x), for g(x) based at b = 1.
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) On the interval [ = , for which of the values of n below does Taylor’s inequality
guarantee that |f(z ) ( )| < 0.0017?
You must show enough error bound calculations to justify your answer.
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