Print Your Name			Signature
Student ID Number			Quiz Section
Professor's Name			TA's Name

!!! READ...INSTRUCTIONS...READ **!!!**

- 1. Your exam contains 9 questions and 11 pages; PLEASE MAKE SURE YOU HAVE A COMPLETE EXAM.
- 2. The entire exam is worth 90 points. Point values for problems vary and these are clearly indicated. You have 2 hours and 50 minutes for this final exam.
- 3. Make sure to ALWAYS SHOW YOUR WORK; you will not receive any partial credit unless all work is clearly shown. If in doubt, ask for clarification.
- 4. There is plenty of space on the exam to do your work. If you need extra space, use the back pages of the exam and clearly indicate this.
- 5. You are allowed one 8.5×11 sheet of handwritten notes (both sides). Graphing calculators are NOT allowed; scientific calculators are allowed. Make sure your calculator is in radian mode.
- 6. Unless otherwise instructed, ALWAYS GIVE YOUR ANSWERS IN EXACT FORM. For example, 3π , $\sqrt{2}$, $\ln(2)$ are in exact form; the corresponding approximations 9.424778, 1.4142, 0.693147 are NOT in exact form.

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	

Problem	Total Points	Score
6	10	
7	10	
8	10	
9	10	
Total	90	

1. Let
$$f(x) = \frac{1}{1 + \frac{1}{2}x^2} - e^{(3x^2)}$$
.

(a) Give the Taylor series for f(x) based at b = 0. Write your answer using one sigma sign.

(b) Give the open interval of convergence for the Taylor series in part (a).

(c) Find the fourth Taylor polynomial, $T_4(x)$, for f(x) based at b = 0.

- 2. The location of a particle is given by the vector function $\mathbf{r}(t) = \langle 3t-6, 2t^3-5t, -t^2+11 \rangle$.
 - (a) Find the **speed** of the particle at the instant when it passes through the yz-plane.

(b) Find all times when the tangential component of acceleration is zero.

- 3. Let $f(x) = x \ln x$.
 - (a) Find the second Taylor polynomial $T_2(x)$ for f(x) based at the b = 1.

(b) Use the Quadratic Approximation Error Bound to find an interval J containing b so that the error bound is at most 0.01.

4. (a) Find the equation of the plane containing the line

$$x = 1 + 3t, y = 2 + 2t, z = 3 + t$$

and the point (0, -2, 5).

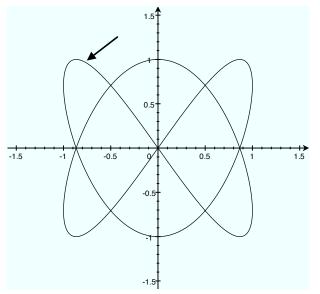
(b) Write the equation of the line of intersection of the two planes defined by:

2x - z = 0 and x + y + z = 1.

5. The curve

 $x = \sin 2t, y = \cos 3t$

is shown below.



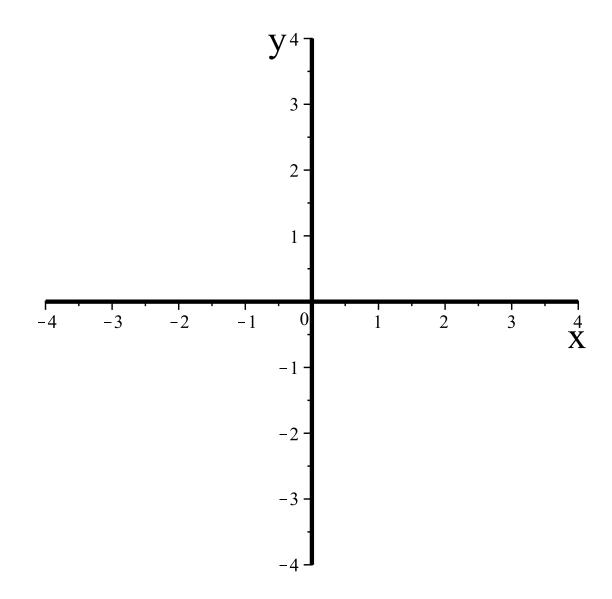
The point t = 2 is marked by the arrow.

(a) Find the equation of the tangent line to the curve at the point t = 2.

(b) Find the curvature of the curve at the point t = 2.

6. Find the volume of the solid that lies under the plane 3x + 2y + z = 12 and above the rectangle $R = [0, 1] \times [-2, 3]$.

- 7. Consider the function $f(x, y) = y x^2$
 - a) Draw a contour diagram for f showing level curves for z = -2, 0, 2.



b) Find the equation of the tangent plane to the surface $z = y - x^2$ at the point (1, 1, 0).

- 8. Consider the function $f(x, y) = x^2 + y^2 xy$ over D, where D is the region enclosed by the circle of radius 4 centered at the origin.
 - (a) Find and classify all critical points.

(b) Find the absolute maximum value of f(x, y) over D.

- 9. Consider the parametric curve $\mathbf{r}(t) = \langle \sin^2(t), \sin(t) \cos(t), \cos(t) \rangle$, for t between 0 and 2π .
 - (a) Show that the tangent vector at every point is perpendicular to $\mathbf{r}(t)$.

(b) Show that $\mathbf{r}(t)$ is always lying on the sphere of radius one.