In this worksheet, we explore the Fundamental Theorem of Calculus and applications of the Area Problem to problems involving distance and velocity.

FTC Practice

Let f(x) be given by the graph to the right and define $A(x) = \int_0^x f(t) dt$. Compute the following.

$$A(2) = \underline{\qquad 4}$$

$$A(3) = 6\frac{1}{2}$$
 $A(4) = 9$

$$A(4) = 9$$

$$A'(1) = \underline{2}$$

$$A'(1) = \underline{\qquad \qquad} \qquad A'(2) = \underline{\qquad \qquad}$$

$$A'(3) = 3$$

$$A'(4) = \underline{2}$$

The maximum value of A(x) on the interval [0, 5] is $\underline{\qquad} 10^{\frac{1}{2}}$

The maximum value of A'(x) on the interval [0,5] is _____3

Velocity and Distance

A toy car is travelling on a straight track. Its velocity v(t), in m/sec, be given by the graph to the right. Define s(t)to be the position of the car in meters. Choose coordinates so that s(0) = 0. Compute the following.

$$s(2) = 3\frac{1}{2}$$
 $s(4) = 3\frac{1}{2}$ $s(6) = 4\frac{1}{6}$

$$s(6) = \frac{4\frac{1}{6}*}{}$$

$$v(2) = 1 v(4) = -1 v(6) = \frac{1\frac{2}{3}}{}$$

$$v(6) = \frac{1\frac{2}{3}}{}$$

The minimum value of s(t) on the interval [0, 7] is _____0

The maximum value of v(t) on the interval [0,7] is _____3

The minimum value of v(t) on the interval [0, 7] is ______1

*This one's a little tricky. $s(6) = s(4) - \left(\frac{1}{2} \times \frac{3}{4} \times 1\right) + \left(\frac{1}{2} \times \frac{5}{4} \times \frac{5}{3}\right)$.

Net and Total Change

3 (a) Evaluate $\int_{-2}^{2} |x^2 - 4| dx$ and $\left| \int_{-2}^{2} (x^2 - 4) dx \right|$ and explain your answers.

First find where $x^2 - 4$ is positive and negative. Since $x^2 - 4 = (x+2)(x-2)$,

$$x^2 - 4 > 0$$
 for $x < -2$ and for $x > 2$,

and

while

$$x^2 - 4 < 0$$
 for $-2 < x < 2$.

So $x^2 - 4$ is negative on the whole interval (-2, 2).

$$\int_{-2}^{2} \left| x^2 - 4 \right| \, dx = \int_{-2}^{2} -\left(x^2 - 4 \right) \, dx = \left(-\frac{1}{3} x^3 + 4x \right) \Big|_{-2}^{2} = \frac{16}{3} + \frac{16}{3} = \frac{32}{3},$$

$$\left| \int_{-2}^{2} \left(x^2 - 4 \right) \, dx \right| = \left| \left(\frac{1}{3} x^3 - 4x \right) \right|_{2}^{2} = \left| -\frac{16}{3} - \frac{16}{3} \right| = \frac{32}{3}.$$

These are the same because $x^2 - 4$ has the same sign (negative) throughout the interval -2 < x < 2.

(b) Now evaluate $\int_{-3}^{3} |x^2 - 4| dx$ and $\left| \int_{-3}^{3} (x^2 - 4) dx \right|$ and explain your answers.

Since $x^2 - 4 > 0$ for -3 < x < -2, $x^2 - 4 < 0$ for -2 < x < 2, and $x^2 - 4 > 0$ for 2 < x < 3,

$$\int_{-3}^{3} |x^{2} - 4| dx = \int_{-3}^{-2} (x^{2} - 4) dx + \int_{-2}^{2} -(x^{2} - 4) dx + \int_{2}^{3} (x^{2} - 4) dx$$

$$= \left(\frac{1}{3}x^{3} - 4x\right)\Big|_{-3}^{-2} + \left(-\frac{1}{3}x^{3} + 4x\right)\Big|_{-2}^{2} + \left(\frac{1}{3}x^{3} - 4x\right)\Big|_{2}^{3}$$

$$= \left(\frac{16}{3} - 3\right) + \left(\frac{16}{3} + \frac{16}{3}\right) + \left(-3 + \frac{16}{3}\right) = \frac{46}{3},$$

while

$$\left| \int_{-3}^{3} \left(x^2 - 4 \right) \, dx \right| = \left| \left(\frac{1}{3} x^3 - 4x \right) \right|_{-3}^{3} = |-3 - 3| = 6.$$

These are not the same because $x^2 - 4$ changes sign in the interval -3 < x < 3.

Another Area Problem

4 An artist you know wants to make a figure consisting of the region between the curve $y=x^2$ and the x-axis for $0\leq x\leq 3$

(ii) Where should the artist divide the region with vertical lines to get 3 pieces with equal areas?

First compute $\int_0^3 x^2 dx = 9$.

- (i) Let a be the value we are looking for. Then we need $\int_0^a x^2 dx = 9/2$. This gives the equation $\frac{1}{3}a^3 = 9/2$. Solving, we get $a = 3/\sqrt[3]{2} \approx 2.38$.
- (ii) Let b and c be the values we are looking for. We need $\int_0^b x^2 dx = 9/3 = 3$ and $\int_c^3 x^2 dx = 3$. The first integral gives $\frac{1}{3}b^3 = 3$ so $b = \sqrt[3]{9} \approx 2.08$. The second integral gives $9 \frac{1}{3}c^3 = 3$ so $c = \sqrt[3]{18} \approx 2.62$.