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1. (14 points) Evaluate the following integrals. Show your work. Simplify and box your answers
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2. (10 points) The graph of y = f(x) on [0,10] is shown below. It consists of two line segments and a
half circle. Use it to answer the following questions. Show your steps
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(a) (3 points) Find the average value of f on the interval [0, 3].
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(b) (2 points) Use the graph and areas to compute / | f(x)]dx
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(c) (3 points) Define F(r) = / f(x)dx. Evaluate F'(5).
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(d) (2 points) Evaluate /I?\!l—f- [f/(x))2dx (Hint: There is a quick way to answer this question!)
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3. (5 points) A “bead” is formed by drilling a hole of radius » = 1 cm through the center of a sphere of
radius R =2 cm.

Set up an integral equal to the volume of the resulting bead. Do not compute the integral. 7{.+ ‘_’7.__ § 4
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4. (5 points) Suppose all we know about some continuous function g(x) is that

lzg g(x) forall x > 1.

Circle which of the following statements MUST be true, based on the provided information, and

justify the statement(s) that you circled. "
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5. (10 points) A rope is 10 m long, has a total mass of 20 ke. and hangs over the edge of a tall building.
Recall that g = 9.8m/s. 1 (ope weighs ?‘L"i- 2 kg /m .

D v =
(a) (5 points) Compute the work required to pull the entire rope to the top of the building.
Include units.
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(b) (5 points) Compute the work required to pull just half the rope to the top of the building.
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6. Consider the region R in the first quadrant bounded by the y-axis and by the ellipse >
* | e et
3 — ")
x‘—i—L:l (\,/7') =4
4 l' =¥z
(a) (8 points) Compute the area of this region.
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(b) (8 points) Find the coordinates (X, V) of the centroid of this same region. y-2= -Lzﬁ:x_’_-
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7. (8 points) Compute the arc length of the curve
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over the interval 0 < x < 1.
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8. (10 points) The following two differential equations may appear similar but have very different
solutions. Solve both, subject to the same initial condition, as indicated. Show your steps and give
your final answers in explicit form, y = y(x).

. dy . _
(a) (5 points) e with y(1) = 2.

d '
(b) (5 points) d—" =y, with y(1) = 2.
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9. (10 points) A container has 75 gallons of liquid in it. At noon, liquid starts being poured into the
container at a constant rate of 2 gallons/min. At the same time, liquid starts leaking out of the container
through a hole on the bottom, at a rate out that is proportional to the current volume of liquid in the
container.

(a) (3 points) Let V(z) denote the volume of liquid in the container, in gallons, at 1 minutes past
noon. Write down the differential equation and initial value satisfied by V(). Use k for the
constant of proportionality.
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(b) (7 points) Assume the constant of proportionality is k = 0.2. Solve the differential equation from
part (a) to obtain an explicit expression for V = V(¢), and then determine what happens to the
volume of the liquid in the container as time goes on (i.e. as f — oo).
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10. Recall that /]n(x)dx = xIn(x) —x+ C. You may use this without further justification.

(a) (8 points) Compute /I(ln_r)zdx and /I(In_r)?’dx_
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(b) (4 points) Let k be any positive integer. Show that:
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