1. (12 points) Evaluate the following integrals. Show your work. Simplify and box your answers.

(a) \[\int_0^{\pi/4} y \sin(y) \, dy \]

Integration by Parts: \(u = y \) \(\quad \& \quad dv = \sin(y) \, dy \)
\(du = dy \) \(\quad \& \quad v = -\cos(y) \)

\[= -y \cos(y) \bigg|_0^{\pi/4} + \int_0^{\pi/4} \cos(y) \, dy \]

\[= \left[-y \cos(y) + \sin(y) \right]_0^{\pi/4} \]

\[= \left[-\pi \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right] - \left[0 \right] \]

\[= -\pi \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \left(1 - \pi \right) \]

(b) \[\int_0^{\pi/6} 16 \cos^2(2x) \sin^2(2x) \, dx \]

\[= \int_0^{\pi/6} 16 \left(\frac{1 + \cos(4x)}{2} \right) \left(\frac{1 - \cos(4x)}{2} \right) \, dx \]

\[= \int_0^{\pi/6} 4 \left(1 - \cos^2(4x) \right) \, dx \]

\[= \int_0^{\pi/6} 4 \left(\frac{1 - \cos(8x)}{2} \right) \, dx \]

\[= \left[2x - \frac{1}{4} \sin(8x) \right]_0^{\pi/6} \]

\[= \left[\frac{\pi}{3} - \frac{1}{4} \sin\left(\frac{4\pi}{3} \right) \right] - \left[0 \right] \]

\[= \frac{\pi}{3} - \frac{1}{4} \cdot \frac{-\sqrt{3}}{2} \]

\[= \frac{\pi}{3} + \frac{\sqrt{3}}{8} \]
2. (14 points) Answer the following two unrelated questions. Show your work and box your answer.

(a) Evaluate the integral: \(\int \ln(x^2 + 1) \, dx \)

\[
\begin{align*}
\int \ln(x^2 + 1) \, dx &= \int \frac{2x}{x^2 + 1} \, dx \\
&= x \ln(x^2 + 1) - \int \frac{2x}{x^2 + 1} \, dx \\
&= x \ln(x^2 + 1) - \ln(x^2 + 1) - 2\arctan(x) + C
\end{align*}
\]

(b) The acceleration and the initial velocity of a object moving on a straight line are given by:

\[a(t) = 2t + 6 \text{ m/s}^2 \quad \text{and} \quad v(0) = -7 \text{ m/s} \]

Find the total distance traveled by the particle from \(t = 0 \) to \(t = 2 \) seconds.

\[
\begin{align*}
\text{Accel.} &= 2t + 6 \quad \Rightarrow \quad \text{Vel.} = t^2 + 6t + C \\
\text{Since} \quad v(0) = -7 \quad \Rightarrow \quad C = -7 \\
\text{So:} \quad \langle v(t) = t^2 + 6t - 7 \text{ m/s} \rangle &= \langle (t+7)(t-1) \rangle \\
\text{Total dist.} &= \int_0^2 \left| t^2 + 6t - 7 \right| \, dt \\
&= \int_0^1 \left(-t^2 - 6t + 7 \right) \, dt + \int_1^2 \left(t^2 + 6t - 7 \right) \, dt \\
&= \left[-\frac{1}{3}t^3 - 3t^2 + 7t \right]_0^1 + \left[\frac{1}{3}t^3 + 3t^2 - 7t \right]_1^2 \\
&= \left[-\frac{11}{3} \right] + \left(\frac{2}{3} - \frac{-11}{3} \right) \\
&= \frac{8}{3} \text{ meters}
\end{align*}
\]
3. Consider the region enclosed by the graphs \(y = 9x - x^3 \), \(y = 2x \), \(x = 0 \), and \(x = 2 \) pictured below.

(a) (4 points) **Set up** an integral that represents the volume of the solid formed by rotating this region about the y-axis. (Do not compute the volume).

Note: We cannot solve \(y = 9x - x^3 \) for \(x \) in terms of \(y \) so we must set up our integrals in \(x \). This means vertical rectangles, so shells for part (a) & washers in part (b).

\[
V_1 = \int_0^2 2\pi x \left[(9x - x^3) - (2x) \right] \, dx
\]

\[
= \int_0^2 2\pi x (7x - x^3) \, dx
\]

(b) (4 points) **Set up** an integral that represents the volume of the solid formed by rotating this region about the line \(y = -5 \). (Do not compute the volume).

Washers:

\[
V_2 = \int_0^2 \pi R^2 - \pi r^2 \, dx
\]

\[
= \left[\int_0^2 \pi \left[(9x - x^3)^2 - (2x + 5)^2 \right] \, dx \right]
\]
4. (7 points) The graph below shows the instantaneous velocity \(v(t) \) (in meters per second) of an object moving along a straight line, as a function of time \(t \) (in seconds).

Use Simpson's Rule with \(n = 6 \) subintervals to approximate the **average velocity** \(v_{\text{ave}} \) of the object from \(t = 0 \) to \(t = 6 \) seconds.

\[
v_{\text{ave}} = \frac{1}{6} \int_{0}^{6} v(t) \, dt
\]

\[
= \frac{1}{6} \cdot \frac{1}{3} \left[v(0) + 4v(1) + 2v(2) + 4v(3) + 2v(4) + 4v(5) + v(6) \right]
\]

\[
= \frac{1}{6} \cdot \frac{1}{3} \cdot \left[4 + 4(9) + 2(20) + 4(31) + 2(36) + 4(29) + 1 \right]
\]

\[
= \frac{1}{18} \left[4 + 36 + 40 + 124 + 72 + 116 + 1 \right] = \frac{1}{18} [396]
\]

\[
= \boxed{22} \text{ m/s}
\]
5. Let \(R \) be the region in the first quadrant which is shown below, and it is described by:

\[
0 \leq y \leq \frac{x}{\sqrt{4-x^2}}, \quad 0 \leq x < 2
\]

Note that \(f(x) = \frac{x}{\sqrt{4-x^2}} \) has a vertical asymptote; use limits for improper integrals as needed, and determine if they converge or diverge.

(a) (6 points) Compute the area of this region \(R \).

\[
A = \int_{0}^{2} \frac{x}{\sqrt{4-x^2}} \, dx
\]

\[
= \int_{0}^{1} \frac{1}{\sqrt{u}} \left(\frac{1}{2} \right) du
\]

\[
= \frac{1}{2} \int_{0}^{1} \frac{du}{\sqrt{u}} = \frac{1}{2} \lim_{a \to 0^+} \int_{a}^{1} u^{-\frac{1}{2}} du.
\]

\[
= \frac{1}{2} \lim_{a \to 0^+} 2\sqrt{u} \bigg|_{a}^{1} = \lim_{a \to 0^+} (\sqrt{1} - \sqrt{a})
\]

\[
= 2
\]

(b) (7 points) Compute the x-coordinate, \(\bar{x} \), of its centroid (center of mass).

\[
\bar{x} = \frac{1}{2} \int_{0}^{2} \frac{x^2}{\sqrt{4-x^2}} \, dx
\]

\[
= \frac{1}{2} \int_{0}^{\pi/2} \frac{4 \sin^2 \theta}{2 \cos \theta} \cdot 2 \cos \theta \, d\theta
\]

\[
= \int_{0}^{\pi/2} \frac{1 - \cos 2\theta}{2} \, d\theta
\]

\[
= \left[\theta - \frac{1}{2} \sin(2\theta) \right]_{0}^{\pi/2}
\]

\[
= \left[\frac{\pi}{2} - \frac{1}{2} \sin(\pi) \right] - \left[0 \right]
\]

\[
= \frac{\pi}{2}
\]

\[\text{(problem continues on the next page)}\]
(c) (8 points) Recall the region \mathcal{R} from the previous page, bounded above by $y = \frac{x}{\sqrt{4-x^2}}$, for $0 \leq x < 2$.

Use limits for improper integrals as needed, and determine if they converge or diverge.

Compute the y-coordinate, \bar{y}, of the centroid of \mathcal{R}.

\[
\bar{y} = \frac{1}{2} \int_0^2 \frac{1}{2} \left(\frac{x}{\sqrt{4-x^2}} \right)^2 \, dx
\]

\[
= \frac{1}{4} \int_0^2 \frac{x^2}{4-x^2} \, dx.
\]

\[
= \frac{1}{4} \lim_{b \to 2^-} \left[\int_0^b \frac{x^2}{4-x^2} \, dx \right].
\]

\[
= \frac{1}{4} \lim_{b \to 2^-} \left[\left. \frac{x^2}{2} \right|_0^b + \ln \left| \frac{2+x}{2-x} \right| \right].
\]

\[
= \frac{1}{4} \left[-2 + \lim_{b \to 2^-} \ln \left| \frac{2+b}{2-b} \right| \right].
\]

DIVERGES

\[
\int \frac{-x^2}{4-x^2} \, dx
\]

\[
= \int -1 + \frac{1}{4-x^2} \, dx
\]

\[
= -x + \int \frac{1}{(2-x)(2+x)} \, dx
\]

\[
\int P.F. \cdot \frac{1}{(2-x)(2+x)} = \frac{A}{2-x} + \frac{B}{2+x}
\]

\[
A = 4 \cdot A(2+x) \Rightarrow A = 1
\]

\[
B = 4 \cdot B(2-x) \Rightarrow B = 1.
\]

\[
= -x + \int \frac{1}{2-x} + \frac{1}{2+x} \, dx
\]

\[
= -x - \ln |2-x| + \ln |2+x| + C
\]

\[
= -x + \ln \left| \frac{2+x}{2-x} \right| + C
\]

Remark: $\int \frac{-x^2}{4-x^2} \, dx$ could also be computed using a trig sub with

$x = 2 \sin \theta \Rightarrow dx = 2 \cos \theta \, d\theta$

(Answer: $-x + 2 \ln \left| \frac{2+x}{2-x} \right|$)

However, $x = 2 \sec \theta$ is not correct because the bounds are $0 \leq x \leq 2$

so $\sec \theta = \frac{x}{2}$ would ≤ 1 which is not possible. You'd also get an impossible right triangle.
6. (8 points) A tank of the shape shown in the picture, with height=7m, length=10m, and width=5m, is full of water. Water weighs 1000 kg/m³, and the gravitational acceleration is \(g = 9.8 \text{ m/s}^2 \).

Set up (do not evaluate) an integral equal to the work required to pump all the water out of the tank through a spout that is 1 m above the top of the tank.

Specify the meaning of your variable of integration, either in words or on the picture.

With \(y \) = height above bottom:

\[
W = \int_0^7 9800 (8-y) (5x \, dy)
\]

\[
= \int_0^7 9800 (8-y) \frac{50}{7} (7-y) \, dy
\]

\[(02)\]

With \(y \) = depth below top of tank:

\[
W = \int_0^7 9800 (y+1) \frac{50}{7} y \, dy
\]

7. (a) (4 points) Write down an integral equal to the **arclength** \(L(t) \) of the portion of the curve:

\[y = e^x, \text{ from } x = 0 \text{ to } x = t. \]

\[
dy/dx = e^{x^2}, 2x
\]

\[
L(t) = \int_0^t \sqrt{1 + (e^{x^2} \cdot 2x)^2} \, dx = \int_0^t \sqrt{1 + 4x^2 e^{2x^2}} \, dx
\]

(b) (4 points) At what rate is \(L(t) \) increasing when \(t = 1 \)?

\[
L'(t) = \sqrt{1 + 4 \cdot t^2 e^{t^2}}
\]

\[
L'(1) = \sqrt{1 + 4 e^2}
\]
8. (10 points) Find the solution to the differential equation

\[
\frac{dy}{dx} = \frac{xy + y}{2 \ln(y)}
\]

that satisfies the initial condition \(y(1) = e^2 \). Give your solution in explicit form, \(y = f(x) \).

\[
\frac{d\ln y}{dx} = \frac{x+1}{2} \frac{\ln y}{x+y} \]

\[
\int \frac{\ln y}{y} \, dy = \int \frac{x+1}{2} \, dx
\]

\[
\frac{\ln y}{y} \, dy = \frac{1}{2} \left(\frac{x^2}{2} + x \right) + C
\]

\[
\frac{u^2}{2} = \frac{1}{2} \left(\frac{x^2}{2} + x \right) + C
\]

\[
(\ln y)^2 = \frac{x^2}{2} + x + C_1
\]

\[
y(1) = e^2 \Rightarrow \frac{(\ln e^2)^2}{4} = \frac{1}{2} + 1 + C_1 \Rightarrow C_1 = 4 - \frac{1}{2} - 1 = 3 - \frac{1}{2}
\]

\[
C_1 = \frac{5}{2}
\]

\[
(\ln y)^2 = \frac{x^2}{2} + x + \frac{5}{2}
\]

\[
\ln y = \frac{1}{2} \sqrt{\frac{x^2}{2} + x + \frac{5}{2}}
\]

\[
y(1) = e^2 \Rightarrow \text{we need the } 0
\]

\[
y = e^{\frac{1}{2} \sqrt{\frac{x^2}{2} + x + \frac{5}{2}}}
\]
9. A 2000 L tank is full of a mixture of water and salt, with 500 grams of salt initial dissolved in the tank. Fresh water (with NO salt) is pumped into the tank at a rate of 20 L/s. The mixture is kept stirred and is pumped out at a rate of 40 L/s. (This means the tank is losing volume at a rate of 20 - 40 = -20 L/s).

(a) (1 point) Give the linear function \(V(t) = at + b \) for the volume in liters after \(t \) seconds.

\[
V(t) = -20t + 2000
\]

(b) (4 points) Let \(y(t) \) be the amount of salt in grams in the tank after \(t \) seconds. Write down the differential equation AND initial condition satisfied by \(y(t) \). Do not solve anything yet.

\[
\frac{dy}{dt} = 0 - \left(\frac{y}{-20t+2000} \right) (40)
\]

\[
y(0) = 500
\]

(c) (6 points) Solve the differential equation to find \(y(t) \). Show work. Simplify and box your answer.

\[
\frac{dy}{dt} = \frac{2y}{t-100} \quad \Rightarrow \quad \int \frac{1}{y} \, dy = \int \frac{2}{t-100} \, dt
\]

\[
\ln |y| = 2 \ln |t-100| + C
\]

\[
y = e^{2 \ln |t-100| + C} = C_1 e^{2 \ln |t-100|} = C_1 (t-100)^2
\]

\[
y(0) = 500: \quad 500 = C_1 |1-100| = C_1 (10000) \quad \Rightarrow \quad C_1 = \frac{500}{10000} = \frac{1}{20}
\]

\[
y = \frac{1}{20} |t-100|^2
\]

(d) (1 point) How many grams of salt are left in the tank after 60 seconds? Simplify your answer.

\[
y(60) = \frac{1}{20} |60-100|^2 = \frac{1}{20} |-40|^2 = \frac{1600}{20} = 80 \text{ grams}
\]