1. Compute the derivatives of the following functions. Do not simplify your answers.
(a) (4 points) $f(x)=\sqrt{\cos ^{2} x+5 x^{7}}$

$$
f^{\prime}(x)=\frac{-2 \cos x \cdot \sin x+35 x^{6}}{2 \sqrt{\cos ^{2} x+5 x^{7}}}
$$

(b) (4 points) $g(t)=\tan ^{-1}\left(\frac{5 t+3}{t^{2}+4}\right)$

$$
g^{\prime}(t)=\frac{1}{1+\left(\frac{5 t+3}{t^{2}+4}\right)^{2}} \cdot \frac{5 \cdot\left(t^{2}+4\right)-2 t \cdot(5 t+3)}{\left(t^{2}+4\right)^{2}}
$$

(c) (5 points) $y=x^{\sqrt{x}}$

$$
\begin{aligned}
\ln y & =\ln x^{\sqrt{x}} \\
& =\sqrt{x} \cdot \ln x \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\frac{1}{2 \sqrt{x}} \cdot \ln x+\sqrt{x} \cdot \frac{1}{x} \\
\frac{d y}{d x} & =y \cdot\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right) \\
& =x^{\sqrt{x}} \cdot\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

2. Consider the curve given by the parametric equations

$$
\begin{aligned}
& x=t^{2}-6 t \\
& y=t-3 \ln t
\end{aligned}
$$

(a) (6 points) Find the equation of the tangent line to the curve when $t=1$.

$$
\text { At } t=1
$$

$$
\begin{aligned}
x & =1^{2}-6 \cdot 1=-5 \\
y & =1-3 \ln 1=1 \\
\frac{d x}{d t} & =2 t-6 \\
& =2 \cdot 1-6=-4 \\
\frac{d y}{d t} & =1-\frac{3}{t} \\
& =1-\frac{3}{1}=-2 \\
\frac{d y}{d x} & =\frac{d y / d t}{d x / d t} \\
& =\frac{-2}{-4}=\frac{1}{2}
\end{aligned}
$$

The equation of the tangent line is $\quad y-1=\frac{1}{2}(x+5)$
(b) (6 points) Find all times $t \geq 0$ when the tangent line has slope equal to $\frac{1}{3}$.

$$
\begin{aligned}
\frac{1}{3} & =\frac{d y}{d x} \\
& =\frac{1-\frac{3}{t}}{2 t-6} \\
2 t^{2}-6 t & =3 t-9 \\
0 & =2 t^{2}-9 t+9 \\
& =(2 t-3)(t-3) \\
t & =3, \frac{3}{2}
\end{aligned}
$$

The derivative is undefined at $t=3$. The only correct value is $t=\frac{3}{2}$.
3. (8 points) Each side of a square is increasing at a rate of 2 feet/second. At what rate is the area of the square increasing when the area of the square is 49 square feet?

Let A be the area and x be the length of a side.
When $A=49$, we have $x=7$.

$$
\begin{aligned}
A & =x^{2} \\
\frac{d A}{d t} & =2 x \cdot \frac{d x}{d t} \\
& =2 \cdot 7 \cdot 2 \\
& =28 f^{2} / \mathrm{sec}
\end{aligned}
$$

4. (8 points) Find all the points (a, b) on the curve $x^{2}+y^{3}-6 x=18$ where the tangent line is horizontal.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+y^{3}-6 x\right) & =\frac{d}{d x} 18 \\
2 x+3 y^{2} y^{\prime}-6 & =0 \\
y^{\prime} & =\frac{6-2 x}{3 y^{2}} \\
\frac{6-2 x}{3 y^{2}} & =0 \\
x & =3 \\
3^{2}+y^{3}-6 \cdot 3 & =18 \\
y & =3
\end{aligned}
$$

The only point is $(3,3)$.
Note that the denominator in y^{\prime} is not zero at this point.
5. (9 points) Let $x^{2}-6 x y+y^{3}=8$. Find the value of $y^{\prime \prime}$ at the point where $x=0$.

When $x=0$, we get $y=2$.
First compute y^{\prime}.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}-6 x y+y^{3}\right) & =\frac{d}{d x} 8 \\
2 x-6 y-6 x y^{\prime}+3 y^{2} y^{\prime} & =0 \\
2 \cdot 0-6 \cdot 2-6 \cdot 0 \cdot y^{\prime}+3 \cdot 2^{2} \cdot y^{\prime} & =0 \\
-12+12 y^{\prime} & =0 \\
y^{\prime} & =1
\end{aligned}
$$

Now compute $y^{\prime \prime}$.

$$
\begin{aligned}
\frac{d}{d x}\left(2 x-6 y-6 x y^{\prime}+3 y^{2} y^{\prime}\right) & =\frac{d}{d x} 0 \\
2-6 y^{\prime}-6 y^{\prime}-6 x y^{\prime \prime}+6 y y^{\prime} y^{\prime}+3 y^{2} y^{\prime \prime} & =0 \\
2-6 \cdot 1-6 \cdot 1-6 \cdot 0 \cdot y^{\prime \prime}+6 \cdot 2 \cdot 1^{2}+3 \cdot 2^{2} \cdot y^{\prime \prime} & =0 \\
2+12 y^{\prime \prime} & =0 \\
y^{\prime \prime} & =-\frac{1}{6}
\end{aligned}
$$

This page is for extra work.

