1. [5 points per part] For each of the following functions, compute $f^{\prime}(x)$

$$
\begin{aligned}
& \text { (a) } f(x)=\ln \left(\sec (x)+e^{x}\right) \\
& f^{\prime}(x)=\frac{\sec (x) \tan (x)+e^{x}}{\sec (x)+e^{x}}
\end{aligned}
$$

(b) $f(x)=\arcsin \left(3 x^{2}\right)$

$$
f(x)=\frac{1}{\sqrt{1-\left(3 x^{2}\right)^{2}}} \cdot 6 x=\frac{6 x}{\sqrt{1-9 x^{4}}}
$$

$$
\begin{aligned}
& \text { (c) } \begin{aligned}
& f(x)=(\cos (x)+2)^{\sqrt{x}} \\
& y=(\cos (x)+2)^{\sqrt{x}} \\
& \ln (y)=\ln \left((\cos (x)+2)^{\sqrt{x}}\right)=\sqrt{x} \ln (\cos (x)+2) \\
& \downarrow \frac{d}{d x}
\end{aligned} \\
& \frac{y^{\prime}}{y}=\frac{1}{2 \sqrt{x}} \ln (\cos (x)+2)+\sqrt{x} \frac{\sin (x)}{\cos (x)+2} \\
& y^{\prime}=(\cos (x)+2)^{\sqrt{x}}\left(\frac{\ln (\cos (x)+2)}{2 \sqrt{x}}+\frac{\sqrt{x} \sin (x)}{\cos (x)+2}\right)
\end{aligned}
$$

2. [12 points] Consider the following parametric curve on the domain $t>0$:

$$
x(t)=t^{2}-12 t+10 \ln (t) \quad y(t)=5 \arctan (t)-t
$$

Find all points on the curve where the tangent line is vertical, and all points where it is horizontal. (Specify which is which.)
Write your answers in exact form. You do not need to simplify.

$$
y^{\prime}(t)=0, \quad x^{\prime}(t) \neq 0
$$

$$
\begin{aligned}
& x^{\prime}(t)=0, y^{\prime}(t) \neq 0 \\
& y^{\prime}(t)=\frac{5}{1+t^{2}}-1=0 \\
& \frac{5}{1+t^{2}}=1 \\
& 5=1+t^{2} \\
& t^{2}=4 \\
& t=2 \quad \text { (not }-2 \mathrm{~b} / \mathrm{c} \text { of domain) }
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime}(t)= & 2 t-12+\frac{10}{t}=0 \\
& 2 t^{2}-12 t+10=0 \\
& t^{2}-6 t+5=0 \\
& (t-1)(t-5)=0 \\
& t=1 \text { or } 5
\end{aligned}
$$

Horizontal at $z=2$

$$
\longrightarrow(-20+10 \ln (2), 5 \arctan (2)-2)
$$

Vertical ar $t=1$ \& $t=5$

$$
\left(-11, \frac{5 \pi}{4}-1\right) \&(-35+10 \ln (5), 5 \arctan (5)-5)
$$

3. [9 points] Let $f(x)=x \sqrt{4 x+1}$.

Use the linearization of f at $x=2$ to find an approximate solution to the equation

$$
\begin{aligned}
& f^{\prime}(x)=\sqrt{4 x+1}+\frac{4 x}{2 \sqrt{4 x+1}} \\
& f^{\prime}(2)=3+\frac{8}{6}=\frac{13}{3} \quad f(2)=6 \\
& L(x)=6+\frac{13}{3}(x-2) \\
& 5.935=6+\frac{13}{3}(x-2) \\
& -0.065=\frac{13}{3}(x-2) \\
& -0.015=x-2 \\
& x=1.985
\end{aligned}
$$

4. [9 points] Consider the curve defined implicitly by the equation $\cos (\pi x)+3^{y}=x^{2} y+6$. Find the equation of the line tangent to this curve at the point $(1,2)$.

$$
\begin{aligned}
& -\pi \sin (\pi x)+3^{y} \ln (3) \frac{d y}{d x}=2 x y+x^{2} \frac{d y}{d x} \\
& 3^{y} \ln (3) \frac{d y}{d x}-x^{2} \frac{d y}{d x}=2 x y+\pi \sin (\pi x) \\
& \frac{d y}{d x}=\frac{2 x y+\pi \sin (\pi x)}{3^{y} \ln (3)-x^{2}} \stackrel{x=1}{y=2} \quad \frac{4}{9 \ln (3)-1} \\
& y=\frac{4}{9 \ln (3)-1}(x-1)+2
\end{aligned}
$$

5. [15 points] A lighthouse is located on an island 500 meters from the nearest point P on a straight shoreline. Its beam rotates at a constant speed.
When the beam hits a point on the shore 100 meters from P, it's moving at 150 meters per second along the shoreline.

How long does it take the beam to make one complete revolution?

$$
\begin{aligned}
& \tan (\theta)=\frac{x}{500} \\
& \downarrow \frac{d}{d t} \\
& \sec ^{2}(\theta) \frac{d \theta}{d \tau}=\frac{1}{500} \frac{d x}{d \tau} \\
& \frac{x^{2}+500^{2}}{500^{2}} \frac{d \theta}{d \tau}=\frac{\frac{d x}{d t}}{500} \sec (\theta)=\frac{\sqrt{x^{2}+500^{2}}}{500} \\
& \text { Plug in: } x=100, \frac{d x}{d t}=-150 \\
& \frac{100^{2}+500^{2}}{500} \frac{d \theta}{d t}=-150 \\
& \frac{d \theta}{d t}=\frac{-75000}{260000}=\frac{-15}{52} \mathrm{rad} / \mathrm{sec} \\
& S_{0} \text { it takes } \frac{2 \pi}{\left(\frac{15}{52}\right)}=\frac{104 \pi}{15} \approx 21.78 \text { seconds }
\end{aligned}
$$

