HONOR STATEMENT

I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam.

Name (printed letters please)
\square

Signature
\square

Student ID \#

1.	2.	3.	4.	5.	6.	7.	8.	\sum
10	10	10	10	10	10	10	10	80

- You have 80 minutes for 8 problems. Check your copy of the exam for completeness.
- You are allowed to use a hand written sheet of paper (8 x11 in), back and front.
- Calculators may only have basic functions, but no graphing or differentiation functions.
- Justify all your answers and show your work for credit.
- All answers must be exact, no rounding.

Do not open the test until everyone has a copy and the start of the test is announced.

Problem 1. Find the derivative of

$$
f(x)=\ln \left(\arctan \left(x^{4}\right)\right)
$$

Problem 2. Find the derivative of

$$
f(x)=\frac{\arcsin (2 x)+5 x}{\cos \left(x^{2}\right)}
$$

Problem 3. Find the derivative of

$$
f(x)=x^{3}+3^{x}+x^{\sqrt{x}}
$$

Problem 4. A curve in the $x y$-plane is defined by the parametric equations

$$
x(t)=t^{4}-t^{2}, \quad y(t)=t^{2}
$$

Find the coordinates of the leftmost point A of the curve. Exact values.

Problem 5. A curve is given through the parametric equations

$$
x(t)=3 t^{2}-4, \quad y(t)=4 t^{3}-4,
$$

where $t>0$. Find the equation of the tangent line to the curve that passes through the point $(0,-4)$. Exact values.

Problem 6. Given the implicitly defined curve

$$
8 y^{3}+y^{2} \sin (\pi(x-1))=x^{2}
$$

find the tangent line equation at the point (x, y) on the curve where $x=1$. Exact answers.

Problem 7. A conical paper cup is 5 cm in diameter (not the radius!) at the top and 10 cm deep. Water is pouring into the cup at the rate of $2 \mathrm{~cm}^{3}$ per second. How fast is the depth of the water in the cup rising when it is 3 cm deep. The volume of a conical cup is $V=\frac{1}{3} \pi r^{2} h$, where r is the radius of the cone.

Problem 8. Two ladybugs are sitting in adjacent corners of the ceiling of a room, 20 feet apart. They start walking along the edges of the ceiling, in directions as indicated below. If ladybug A walks at a pace of 4 feet per minute and ladybug B at a pace of 2 feet per minute, what is the rate of change of the straight line distance between them after 3 minutes?

For full credit, make your own sketch, label it with all variables you use, and write out the rates that you know and that you want. Keep your answers exact.

