MATH 124 Midterm 2

November 15, 2022
Instructor: Gaku Liu

Name: \qquad
Student \#:

Problem:	1	2	3	4	5	Total
Points:	12	12	8	14	14	60

INSTRUCTIONS:

- You have 80 minutes to take the test.
- There are 5 problems. Make sure you have all of them.
- Write your solution below the problem. There is scratch paper at the back of the test.
- The test is double-sided. Make sure you are reading the backs of pages!
- Unless otherwise stated, show all your work for full credit.
- Unless otherwise stated, all answers should be exact, without rounding.
- You are allowed to use one $8.5 " \times 11 "$ sheet of notes, front and back.
- You can use a TI-30X IIS calculator. No other calculator is allowed.

TIPS:

- The number of points a question is worth is not correlated to its difficulty.
- Don't spend too much time on one problem if you haven't looked at the rest of the test.
- There is partial credit. Even if you can't fully solve a problem, explaining your progress might get you a significant number of points.
- Make sure your calculator is in radians!!!

1. (12 points) Find the equation of the tangent line to the curve

$$
x^{3}-3 x y+y^{3}=3
$$

at the point $(1,2)$.

Page 2
2. Let $f(x)=\ln \left(x^{2}+x-1\right)$.
(a) (6 points) Find $f^{\prime}(x)$.
(b) (6 points) Find the linearization of f at $a=1$, and use it to approximate $f(1.01)$.

Page 3
3. (8 points) A particle is moving counterclockwise along the circle $(x-1)^{2}+(y-3)^{2}=9$ at a constant speed. At the starting time $t=0$, it is at the point $(1,0)$. At time $t=10$, it reaches the point $(4,3)$ for the first time. Write parametric equations describing the motion of the particle.
4. A person is watching the launch of a toy rocket. The person is standing 12 meters away from the launch site of the rocket. At time $t=0$ seconds, the rocket launches vertically into the air, perpendicular to the ground. Let $h(t)$ be the height of the rocket and let $u(t)$ be the distance of the rocket to the person.

(a) (10 points) When the rocket is 9 meters above the ground, it is moving upward at a speed of 8 meters per second. How fast is $u(t)$ increasing at this time? You don't need to include units in your answer.
(b) (4 points) At $t=5$ seconds, the rocket reaches its highest point. Afterwards, it starts falling vertically back to the ground. It hits the ground at $t=10$ seconds. Which of the following graphs most likely resembles the graph of $d u / d t$ in the time interval $0<t<10$? Explain your answer.
$d u / d t$ GRAPH A
$d u / d t$ GRAPH B
$d u / d t$ GRAPH C

5. A particle is moving in the $x y$-plane according to the parametric equations

$$
\begin{aligned}
x(t) & =e^{-t} \cos (5 t) \\
y(t) & =e^{-t} \sin (5 t)
\end{aligned}
$$

(a) (10 points) Find the slope of the tangent line to the movement of the particle when $t=\pi$.
(b) (2 points) Let $u(t)$ be the distance of the particle from the point $(0,0)$ at time t. Show that $u(t)=e^{-t}$.
(c) (2 points) The following picture shows the curve traced out by the particle. Draw arrows on the curve to indicate the direction the particle moves as t increases. Explain how you got your answer.

Page 10

