Solutions to Math 124 C Spring 2023 Midterm II
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2. (a) We evaluate the derivative
dy 3212
de 4t
at the t value where (2t2 — 40,¢> — 12¢t) = (=38, —11). Since the z coordinate is a quadratic, it is

easier to solve
—38 =2t2 —40

to get t = 1. Only ¢t = 1 works for 3 — 12t = —11 so t = 1. The slope of the tangent line is
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so the equation of the tangent line is
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y+1l=—(z+38)
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(b) Intersection the tangent line with the corve

9
3 —12t +11 = 1(2752 — 40+ 38)

which simplifies to
463 + 18t% — 48t +26 =0

Since t = 1 is a root we get
(t —1)(4t* + 22t — 26) = 0

In fact, t =1 is a double root
(t —1)%(4t +26) =0
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so the second point of intersection is when t = —13/2 and the point is (2, - ) = (44.5,—-196.625)



3. First to write the tangent line at (1, P(1)) = (1, —4) we compute
p'(z) = 120% — 2z + 3.
So the slope is p’(1) = 13 and the tangent line is given by
y+1=13x—1)

Now we use approximation:
0+1=13(x—1)

to get x &~ 14/13. To see if it is more or less, we look at the second derivative
p’(r) =24z — 2z
and p”’(1) — 22 > 0. So, near the point (1,—1) we have a concave up increasing picture:
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where the gold tangent stays below and to the right of the purple curve so the approximation is more
than the actual value.
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we use the equation
tanf = —
2000°
The derivative with respect to t is
sec? 6 @ _ 1 dr
dt 2000 dt’

When x = 3 kilometers, the hypotenuse would be /13 so sec = @ Then,

(m)zde 1

2 dt 2000 (=4).
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revolutions per minute.



