Math 124D - Midterm II Autumn 2021 Solutions

Name: \qquad

Student ID \#:

Question	Points	Score
1	12	
2	12	
3	10	
4	12	
5	4	
Total:	50	

1. (12 points) Find the derivatives $y^{\prime}(x)=\frac{d y}{d x}$ of the following functions.
(Your final answers should be in terms of x only.)
(a) $y=\sqrt{x \sin (5 x)}$

Solution: We can write $\sqrt{x \sin (5 x)}=(x \sin (5 x))^{1 / 2}$. Then

$$
\begin{aligned}
\frac{d}{d x} \sqrt{x \sin (5 x)} & =\frac{1}{2}(x \sin (5 x))^{-1 / 2} \cdot \frac{d}{d x}(x \sin (5 x)) \\
& =\frac{1}{2}(x \sin (5 x))^{-1 / 2} \cdot(\sin (5 x)+x \cos (5 x) \cdot 5)=\frac{\sin (5 x)+5 x \cos (5 x)}{2 \sqrt{x \sin (5 x)}}
\end{aligned}
$$

(b) $y=\arctan \left(\frac{x^{3}}{x+1}\right) \quad$ (Here $\arctan (x)$ denotes the inverse function of $\tan (x)$.)

Solution:

$$
\frac{d}{d x}\left[\arctan \left(\frac{x^{3}}{x+1}\right)\right]=\frac{1}{\left(\frac{x^{3}}{x+1}\right)^{2}+1} \cdot \frac{(x+1)\left(3 x^{2}\right)-x^{3}(1)^{2}}{(x+1)}=\frac{2 x^{3}+3 x^{2}}{x^{6}+(x+1)^{2}}
$$

(c) $y=x^{\left(e^{x}\right)}$

Solution: First we apply $\ln (\cdot)$ to both sides,

$$
\ln (y)=\ln \left(x^{e^{x}}\right)=e^{x} \ln (x) .
$$

Differentiating both sides with respect to x the gives

$$
\frac{1}{y} \frac{d y}{d x}=e^{x} \ln (x)+e^{x} \cdot \frac{1}{x}=e^{x}\left(\ln (x)+\frac{1}{x}\right)
$$

Solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=y \cdot e^{x}\left(\ln (x)+\frac{1}{x}\right)=x^{\left(e^{x}\right)} e^{x}\left(\ln (x)+\frac{1}{x}\right) .
$$

2. (12 points)

(a) What is the rate of change of the height of syrup in the barrel when the syrup level is 4 inches from the top of the barrel?

Solution: Let V denote the volume of syrup in the barrel and let h denote its height. The radius of the syrup is the same as the barrel, 5 inches. Then

$$
V=\pi r^{2} h=\pi \cdot(5)^{2} h=25 \pi h
$$

Differentiating both sides with respect to t, we find that $\frac{d V}{d t}=25 \pi \cdot \frac{d h}{d t}$. Since $\frac{d V}{d t}$ equals $-7 \mathrm{in}^{3} / \mathrm{sec}$, we can solve for $\frac{d h}{d t}$:

$$
\frac{d h}{d t}=\frac{-7}{25 \pi} \text { inches per second }
$$

Alternatively, the height is decreasing at a rate of $\frac{7}{25 \pi}$ inches per second.
(b) At what rate is the diameter of the maple syrup on the floor changing at this time?

Solution: Let V denote the volume of syrup on the floor and r its radius. The $V=\pi r^{2}(1)=\pi r^{2}$ Differentiating with respect to t gives $\frac{d V}{d t}=\pi \cdot 2 r \cdot \frac{d r}{d t}$. We know that $\frac{d V}{d t}=7$.
When the syrup level is 4 inches from the top, it has lost $25 \pi \cdot 4=100 \pi$ cubic inches of maple syrup, which is now on the floor. We can solve for the radius of the maple syrup:

$$
100 \pi=\pi r^{2} \quad \Rightarrow \quad r=\sqrt{100}=10
$$

Therefore

$$
7=\pi \cdot 2(10) \frac{d r}{d t}=20 \pi \frac{d r}{d t}
$$

Solving for $\frac{d r}{d t}$ gives $\frac{d r}{d t}=\frac{7}{20 \pi}$. If ℓ is the diameter of the syrup, then $\ell=2 r$ so $\frac{d \ell}{d t}=2 \frac{d r}{d t}$. Then

$$
\frac{d \ell}{d t}=2 \cdot \frac{d r}{d t}=\frac{7}{10 \pi} \quad \text { inches per second. }
$$

3. (10 points) Consider the curve parametrized by $(x(t), y(t))$ where $x(t)$ is graphed below and $y(t)=\cos (\pi t / 2)$.

(a) Find a formula for $y^{\prime}(x)=\frac{d y}{d x}$ when $1<t<3$.

Solution: (a) We compute that $\frac{d y}{d t}=-\sin (\pi t / 2)\left(\frac{\pi}{2}\right)=-\frac{\pi}{2} \sin (\pi t / 2)$. From the graph of $x(t)$ we see that for $1<t<3, \frac{d x}{d t}=-1$. Therefore for $1<t<3$,

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{-\frac{\pi}{2} \sin (\pi t / 2)}{(-1)}=\frac{\pi}{2} \sin (\pi t / 2)
$$

(b) Find $y^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}$ when $t=2$.

Solution: (b) For $1<t<3$, the derivative $\frac{d y}{d x}$ equals $\frac{\pi}{2} \sin (\pi t / 2)$, so

$$
y^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\frac{\pi}{2} \cos (\pi t / 2) \cdot\left(\frac{\pi}{2}\right)}{(-1)}=\frac{-\pi^{2}}{4} \cos (\pi t / 2) .
$$

At $t=2$, this gives $\left(-\pi^{2} / 4\right) \cos (\pi)=\left(-\pi^{2} / 4\right) \cos (\pi)=\pi^{2} / 4$.
(c) What is the smallest positive value of t for which the point $(x(t), y(t))$ returns to its starting position at $t=0$?

Solution: (c) For the point to come back to its starting position, we must have $x(t)=0$, which occurs for $t=2,4,6,8,10,12$.
At $t=2, y(t)=\cos (\pi)=-1 \neq 1=y(0)$, so the point has not returned to its starting position.
At $t=4, y(t)=\cos (2 \pi)=1=y(0)$. Therefore the first time is $t=4$.
4. (12 points) Consider the implicit equation $y^{7}-y=x$.
(a) Find a formula for $y^{\prime}(x)=\frac{d y}{d x}$ in terms of x and y.

Solution: Differentiating both sides with respect to x, we find that

$$
7 y^{6} \cdot y^{\prime}(x)-y^{\prime}(x)=1 \Rightarrow y^{\prime}(x)\left(7 y^{6}-1\right)=1 \Rightarrow y^{\prime}(x)=\frac{1}{7 y^{6}-1}=\left(7 y^{6}-1\right)^{-1}
$$

(b) Find a formula for $y^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}$ in terms of x and y.

Solution: Differentiating with respect to x again then gives

$$
\begin{aligned}
y^{\prime \prime}(x)=\frac{d}{d x}\left[\left(7 y^{6}-1\right)^{-1}\right] & =-\left(7 y^{6}-1\right)^{-2} \cdot\left(42 \cdot y^{5}\right) \cdot y^{\prime}(x) \\
& =-\left(7 y^{6}-1\right)^{-2} \cdot\left(42 \cdot y^{5}\right) \cdot\left(7 y^{6}-1\right)^{-1} \\
& =\frac{-42 y^{5}}{\left(7 y^{6}-1\right)^{3}} .
\end{aligned}
$$

(c) Use a linear approximation of the curve at $(0,1)$ to estimate a value of y so that the point $\left(\frac{1}{2}, y\right)$ lies on the curve.

Solution: $\operatorname{At}(x, y)=(0,1)$,

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(0,1)}=\frac{1}{7(1)^{6}-1}=\frac{1}{6} .
$$

The linear approximation is then $L(x)=1+\frac{1}{6} x$ and the approximate y-value is

$$
L(1 / 2)=1+\frac{(1 / 2)}{6}=1+\frac{1}{12}=\frac{13}{12} .
$$

(d) Does your answer from part (c) over- or under-estimate the true value?

Solution: Note that when $y \geq 1$, the second derivative $y^{\prime \prime}(x)$ is negative. Therefore the answer in part (d) overestimates the true value of y.
5. (4 points) From the definition of the derivative, the following limit can be written as $f^{\prime}(a)$ for some function $f(x)$ and value $x=a$:

$$
\lim _{h \rightarrow 0} \ln \left((1+h)^{1 / h}\right)=\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} .
$$

(a) What is a choice of $f(x)$ and a so that this limit equals $f^{\prime}(a)$?

Solution: We can take the function $f(x)=\ln (x)$ and value $a=1$.
Alternatively,
$f(x)=\ln (1+x)$ and $a=0$ or
$f(x)=\ln (1-c+x)$ and $a=c$ for any c.
(b) Use rules of differentiation to find $f^{\prime}(x)$ and evaluate to find the above limit.

Solution: The derivative of $\ln (x)$ is $f^{\prime}(x)=\frac{1}{x}$ and so the limit equals $f^{\prime}(1)=1$.
(c) Use $e^{\ln (x)}=x$ and your answer in part (b) to find $\lim _{h \rightarrow 0}(1+h)^{1 / h}$.
(Keep your answer in exact form, not numerical.)

Solution: Since $\ln \left((1+h)^{1 / h}\right) \rightarrow 1$ as $h \rightarrow 0$ and the function e^{x} is continuous, the limit of the function $(1+h)^{1 / h}=e^{\ln \left((1+h)^{1 / h}\right)}$ as $h \rightarrow 0$ is $e^{1}=e$.

