1. Determine if the following limits exist. If they exist, compute them. Justify your answers.
(a) (4 points) $\lim _{t \rightarrow 1} \frac{2 t^{2}+t-3}{t^{2}+4 t-5}$

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{2 t^{2}+t-3}{t^{2}+4 t-5} & =\lim _{t \rightarrow 1} \frac{(2 t+3)(t-1)}{(t+5)(t-1)} \\
& =\lim _{t \rightarrow 1} \frac{2 t+3}{t+5} \\
& =\frac{5}{6}
\end{aligned}
$$

(b) (4 points) $\lim _{t \rightarrow \infty} \cos \left(\frac{t+1}{1+3 t-5 t^{2}}\right)$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \cos \left(\frac{t+1}{1+3 t-5 t^{2}}\right) & =\cos \left(\lim _{t \rightarrow \infty} \frac{t+1}{1+3 t-5 t^{2}}\right) \\
& =\cos \left(\lim _{t \rightarrow \infty} \frac{\frac{1}{t}+\frac{1}{t^{2}}}{\frac{1}{t^{2}}+\frac{3}{t}-5}\right) \\
& =\cos \left(\frac{0}{-5}\right) \\
& =\cos (0)=1
\end{aligned}
$$

(c) (4 points) $\lim _{x \rightarrow 3} \frac{\sqrt{2 x-1}}{x^{2}-6 x+9}$

The numerator is approaching $\sqrt{5}$ and the denominator is approaching 0 . This is an infinite limit.
The numerator is never negative. The denominator equals $(x-3)^{2}$. This is positive on either side of $x=3$.
Thus $\lim _{x \rightarrow 3} \frac{\sqrt{2 x-1}}{x^{2}-6 x+9}=+\infty$
2. (7 points) Use the limit definition of the derivative on this problem. Do not use differentiation formaulas. Find the slope of the tangent line to the curve $y=\sqrt{x+3}$ at the point $(1,2)$.

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{x=1} & =\lim _{h \rightarrow 0} \frac{y(1+h)-y(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+h-4}{h \cdot(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2} \\
& =\frac{1}{4}
\end{aligned}
$$

3. (7 points) Calculate the equation of the tangent line to $g(x)=(x+2) e^{x}$ at $x=0$.

The equation of the tangent line is $\quad y-b=m(x-a)$.
Here $a=0$ and $b=g(0)=2$.
The slope is $m=g^{\prime}(0)$.
$g^{\prime}(x)=1 \cdot e^{x}+(x+2) \cdot e^{x}=(x+3) e^{x}$, by the Product Rule.
So $m=g^{\prime}(0)=3$
and the line is $y-2=3(x-0)$
4. (8 points) Let c be a constant and $f(x)= \begin{cases}x^{2}+2 & \text { if } x<1 ; \\ c x-5 & \text { if } x \geq 1 .\end{cases}$

Find the value of c that makes $f(x)$ a continuous function everywhere. Use limits to give a careful justification of your answer.

First note that if $x \neq 1$ then $f(x)$ is continuous at x. Indeed, if $x<1$ then $f(x)$ is a quadratic polynomial and if $x>1$ then $f(x)$ is a linear polynomial.
To make $f(x)$ continuous at $x=1$ we need $\lim _{x \rightarrow 1} f(x)=f(1)$.
Note that $\quad f(1)=c-5$.
We need to look at the left and right limits.
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} c x-5=c-5$, so the function is continuous from the right for every value of c.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}+2=3$
The function will be continuous at $x=1$ if the left limit equals the right limit: $\quad 3=c-5$
Thus the value $c=8$ will make $f(x)$ continuous everywhere.
5. (8 points) A particle is travelling in a straight line. Its position is given by $x=t^{3}-6 t^{2}+12 t$, where x is in feet and t is in seconds. Find the acceleration when the velocity is 0 .

First find the time(s) when the velocity is zero.

$$
\begin{aligned}
v=\frac{d x}{d t} & =3 t^{2}-12 t+12 \\
0 & =3 t^{2}-12 t+12 \\
& =3(t-2)^{2} \\
t & =2 \text { seconds }
\end{aligned}
$$

Now compute the acceleration at $t=2$.

$$
\begin{aligned}
a=\frac{d v}{d t} & =6 t-12 \\
a(2) & =0 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

6. (8 points) Where does the normal line to the parabola $y=x^{2}-3 x+4$ at the point $(1,2)$ intersect the parabola a second time? Give both coordinates of the point of intersection.

First compute the normal line at $x=1$.

$$
\begin{aligned}
\frac{d y}{d x} & =2 x-3 \\
m_{\mathrm{tan}} & =\left.\frac{d y}{d x}\right|_{x=1}=-1
\end{aligned}
$$

The slope of the normal is $\quad m_{\perp}=\frac{-1}{m_{\mathrm{tan}}}=1$.
The normal line is $y-2=1 \cdot(x-1)$ or $y=x+1$.
Now intersect the normal line and the parabola by eliminating y.

$$
\begin{aligned}
x+1 & =x^{2}-3 x+4 \\
0 & =x^{2}-4 x+3 \\
& =(x-1)(x-3) \\
x & =1,3
\end{aligned}
$$

$x=3$ is the value we are looking for. At this value $y=3+1=4$.
The point is $\quad(3,4)$.

