Your Name

Your Signature
\square

Student ID \#

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- Please write your name at the top of every page.
- This exam is closed book. You may use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied materials are allowed.
- You can use only a Texas Instruments TI-30X IIS calculator.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your answer to each question.
- The pages have problems on both sides.
- If you need more room, use the blank last page and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 5 pages, plus this cover sheet. Please make sure that your exam is complete.

Question	Points	Score
1	12	
2	7	
3	7	
4	8	
5	8	
6	8	
Total	50	

1. Determine if the following limits exist. If they exist, compute them. Justify your answers.
(a) (4 points) $\lim _{t \rightarrow 1} \frac{2 t^{2}+t-3}{t^{2}+4 t-5}$
(b) (4 points) $\lim _{t \rightarrow \infty} \cos \left(\frac{t+1}{1+3 t-5 t^{2}}\right)$
(c) (4 points) $\lim _{x \rightarrow 3} \frac{\sqrt{2 x-1}}{x^{2}-6 x+9}$
2. (7 points) Use the limit definition of the derivative on this problem. Do not use differentiation formaulas. Find the slope of the tangent line to the curve $y=\sqrt{x+3}$ at the point $(1,2)$.
3. (7 points) Calculate the equation of the tangent line to $g(x)=(x+2) e^{x}$ at $x=0$.
4. (8 points) Let c be a constant and $f(x)= \begin{cases}x^{2}+2 & \text { if } x<1 ; \\ c x-5 & \text { if } x \geq 1 .\end{cases}$

Find the value of c that makes $f(x)$ a continuous function everywhere. Use limits to give a careful justification of your answer.
5. (8 points) A particle is travelling in a straight line. Its position is given by $x=t^{3}-6 t^{2}+12 t$, where x is in feet and t is in seconds. Find the acceleration when the velocity is 0 .
6. (8 points) Where does the normal line to the parabola $y=x^{2}-3 x+4$ at the point $(1,2)$ intersect the parabola a second time? Give both coordinates of the point of intersection.

This page is for extra work.

