1. [4 points per part] Compute each limit. You may use any techniques you know. If a limit does not exist, write DNE, $\infty$, or $-\infty$ as appropriate.
(a) $\lim _{x \rightarrow 5} \underbrace{\sqrt{2^{x}+7 x}}=\sqrt{2^{5}+35}=\sqrt{67}$
continuous
at $x=5$
(b) $\lim _{x \rightarrow 2} \frac{x-3}{(x-2)^{2}}$
numerator approaches -1
denominator approaches $O$ (positive from both directions)

$$
l_{\text {init }}=-\infty
$$

(c) $\underbrace{\lim _{t \rightarrow a} \frac{\sec (t)-\sec (a)}{t-a}}_{\text {this is the definition }}$
of $f^{\prime}(a)$ where $f(t)=\operatorname{sed}(t)$

$$
f^{\prime}(a)=\sec (a) \tan (a)
$$

(d) $\lim _{x \rightarrow \infty} \sin \left(\frac{\pi x^{4}+3}{3 x^{4}+\pi}\right)$

$$
=\sin \left(\lim _{x \rightarrow \infty}\left(\frac{\pi x^{4}+3}{3 x^{4}+\pi}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}\right.
$$

2. [8 points] Consider the curve $y=\frac{3}{x}$.

Give the equation for a tangent line to this curve which has a $y$-intercept of 8 .

$$
\begin{aligned}
& \begin{array}{l}
\frac{d y}{d x}=\frac{-3}{x^{2}} \\
T_{\text {tangent }} \\
\\
=\frac{-3 x}{a^{2}}+\frac{6}{a} \\
\frac{6}{a}=8 \rightarrow a=\frac{3}{4} \\
y=\frac{-3 x}{\left(\frac{3}{4}\right)^{2}}+\frac{-3}{a^{2}}(x-a)+\frac{3}{a} \\
y
\end{array},
\end{aligned}
$$

3. [8 points] Let $f(x)=x^{3} e^{x}+\sqrt{x}$. Compute $f^{\prime \prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2} e^{x}+x^{3} e^{x}+\frac{1}{2} x^{-1 / 2} \\
f^{\prime \prime}(x) & =6 x e^{x}+3 x^{2} e^{x}+3 x^{2} e^{2 x}+x^{3} e^{x}-\frac{1}{4} x^{-3 / 2} \\
& =\left(x^{3}+6 x^{2}+6 x\right) e^{x}-\frac{1}{4 \sqrt{x^{3}}}
\end{aligned}
$$

4. Consider the following piecewise function:

$$
f(x)= \begin{cases}\frac{x^{2}+a x-21}{x-3} & \text { if } x<3 \\ b & \text { if } x=3 \\ 3 \cos (x)+c & \text { if } x>3\end{cases}
$$

(a) [8 points] Determine constants $a, b$, and $c$ so that $f(x)$ is continuous at $x=3$.

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} \frac{x^{2}+a x-21 \rightarrow 3 a-12}{x-3 \rightarrow 0} \quad \text { DNE unless } 3 a-12=0 \rightarrow a=4 \\
& \lim _{x \rightarrow 3^{-}} \frac{x^{2}+4 x-21}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x+7)(x-3)}{x-3}=\lim _{x \rightarrow 3^{-}}(x+7)=10 \\
& f(3)=b \\
& \lim _{x \rightarrow 3^{+}} 3 \cos (x)+c=3 \cos (3)+c
\end{aligned}
$$

Want $10=b=3 \cos (3)+c$
So $a=4, b=10, c=10-3 \cos (3)$
(b) [8 points] Find $f^{\prime}(x)$. (Let $a, b$, and $c$ be the values you found in part (a).)
(Note: your answer will be a piecewise function, just like $f(x)$.)
For $x<3, \quad f(x)=x+7$, so $f^{\prime}(x)=1$

$$
\begin{aligned}
& \text { For } x<3, f(x)=x+7 \text {, so } 10-3 \cos (3) \text { so } f^{\prime}(x)=-3 \sin (x) \\
& \text { For } x>3, f(x)=3 \cos (x)+1, \quad f^{\prime}(x)=-3 \sin (3) \text { not } 1
\end{aligned}
$$

$f$ is not differentiable at $x=3 \quad\left(\lim _{x \rightarrow 3^{+}} f^{\prime}(x)=-3 \sin (3)\right.$, not 1$)$

$$
\text { So: } \quad f^{\prime}(x)=\left\{\begin{array}{ccc}
1 & \text { if } & x<3 \\
-3 \sin (x) & \text { if } & x>3
\end{array}\right.
$$

5. The graph of $f(x)$ is shown below.


Cool graph, right? Use it to answer the following questions.
(a) $[3$ points] Compute $\lim _{x \rightarrow 2}[\underbrace{f}_{4}(x) \cdot \underbrace{f(x+1)}_{\frac{\downarrow}{2}}] \cdot 8$
(b) [3 points] List all values in the open interval $(-4,9)$ where $f$ is not differentiable.

(c) [3 points] Compute $\lim _{h \rightarrow 0^{+}} \frac{\frac{f(3+h)-2}{h} .}{f^{\prime}(3) \text { from the right }}$
(d) [3 points] Let $g(x)=x f(x)$. What is $g^{\prime}(-3)$ ?

$$
\begin{aligned}
& g^{\prime}(x)=f(x)+x f^{\prime}(x) \\
& g^{\prime}(-3)=\frac{f(-3)-3}{2} \frac{f^{\prime}(-3)}{3}=-7
\end{aligned}
$$

