HONOR STATEMENT

I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam.

Name			

Signature

Student ID #

1.	2.	3.	4.	5.	6.	7.	8.	\sum
10	10	10	10	10	10	10	10	80

- You have 80 minutes for 8 problems. Check your copy of the exam for completeness.
- You are allowed to use a hand written sheet of paper (8x11 in), back and front.
- Calculators may only have basic functions, but no graphing or differentiation functions.
- Justify all your answers and show your work for credit.
- Some credit is given for adhering to formal aspects such as keeping the limit symbol until you take the limit, setting correct parentheses etc.
- All answers must be exact, no rounding.

Do not open the test until everyone has a copy and the start of the test is announced.

GOOD LUCK!

Problem 1. Find the limit of the following expression. Your answer must be a real number (exact value), ∞ , $-\infty$, or DNE, whatever fits **best**. Justify all your work.

$$\lim_{x \to 6} \frac{x^2 - 4x - 12}{x^2 - 5x - 6}.$$

Problem 2. Find the limit of the following expression. Your answer must be a real number (exact value), ∞ , $-\infty$, or DNE, whatever fits best. Justify all your work.

$$\lim_{x \to 3} \arctan\left(\frac{1}{(x-3)^2}\right).$$

Problem 3. The function

$$f(x) = \begin{cases} ax^2 - a + 10 & , x < 1 \\ \\ 12 - 2\sqrt{x} & , x \ge 1 \end{cases}$$

is continuous at x = 1 (you do not need to show this). Determine the constant a so that f is differentiable at all places in \mathbb{R} .

Problem 4. Use the definition of a derivative (the limit-version, no differentiation rules) to find the derivative function of $f(x) = \frac{1}{\sqrt{x}}$ at x = 3. Show all your work and give exact values.

Problem 5. Find the points on the curve

$$y = 2x^3 + 3x^2 - 12x + 1$$

where the tangent line is horizontal.

Problem 6. Consider the following graph of the function f(x). In the given blank coordinate system sketch the graph of f'(x). Be sure to correctly sketch

- Where f'(x) is positive/negative or equal to 0.
- Where f'(x) is constant and what value that constant is.
- Where f'(x) is increasing and where it is decreasing.
- Where f'(x) is not defined.

Problem 7. Consider the function $f(x) = -x^2 - 2$. Find the values both values for a so that the tangent lines through (a, f(a)) to the graph of f pass through the point (2, 0) as shown in the sketch below.

Problem 8. The population of bacteria in a petri dish can be modeled by

$$N(t) = \frac{3250t+1}{t+1},$$

where t measures the time in days $(t \ge 0)$. Show these **TWO** features of the population:

- (a) The population of the bacteria is always (for all $t \ge 0$) growing.
- (b) But the number of bacteria is nearing a certain number when we observe the population for a very long time.