HONOR STATEMENT

I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam.

Name
\square

Signature
\square

Student ID \#

1.	2.	3.	4.	5.	6.	7.	8.	\sum
10	10	10	10	10	10	10	10	80

- You have 80 minutes for 8 problems. Check your copy of the exam for completeness.
- You are allowed to use a hand written sheet of paper ($8 \times 11 \mathrm{in}$), back and front.
- Calculators may only have basic functions, but no graphing or differentiation functions.
- Justify all your answers and show your work for credit.
- Some credit is given for adhering to formal aspects such as keeping the limit symbol until you take the limit, setting correct parentheses etc.
- All answers must be exact, no rounding.

Do not open the test until everyone has a copy and the start of the test is announced.

Problem 1. Find the limit of the following expression. Your answer must be a real number (exact value), $\infty,-\infty$, or DNE, whatever fits best. Justify all your work.

$$
\lim _{x \rightarrow 6} \frac{x^{2}-4 x-12}{x^{2}-5 x-6}
$$

Problem 2. Find the limit of the following expression. Your answer must be a real number (exact value), $\infty,-\infty$, or DNE, whatever fits best. Justify all your work.

$$
\lim _{x \rightarrow 3} \arctan \left(\frac{1}{(x-3)^{2}}\right)
$$

Problem 3. The function

$$
f(x)= \begin{cases}a x^{2}-a+10 & , \quad x<1 \\ 12-2 \sqrt{x} & , \quad x \geq 1\end{cases}
$$

is continuous at $x=1$ (you do not need to show this). Determine the constant a so that f is differentiable at all places in \mathbb{R}.

Problem 4. Use the definition of a derivative (the limit-version, no differentiation rules) to find the derivative function of $f(x)=\frac{1}{\sqrt{x}}$ at $x=3$. Show all your work and give exact values.

Problem 5. Find the points on the curve

$$
y=2 x^{3}+3 x^{2}-12 x+1
$$

where the tangent line is horizontal.

Problem 6. Consider the following graph of the function $f(x)$. In the given blank coordinate system sketch the graph of $f^{\prime}(x)$. Be sure to correctly sketch

- Where $f^{\prime}(x)$ is positive/negative or equal to 0 .
- Where $f^{\prime}(x)$ is constant and what value that constant is.
- Where $f^{\prime}(x)$ is increasing and where it is decreasing.
- Where $f^{\prime}(x)$ is not defined.

Problem 7. Consider the function $f(x)=-x^{2}-2$. Find the values both values for a so that the tangent lines through $(a, f(a))$ to the graph of f pass through the point $(2,0)$ as shown in the sketch below.

Problem 8. The population of bacteria in a petri dish can be modeled by

$$
N(t)=\frac{3250 t+1}{t+1}
$$

where t measures the time in days $(t \geq 0)$. Show these TWO features of the population:
(a) The population of the bacteria is always (for all $t \geq 0$) growing.
(b) But the number of bacteria is nearing a certain number when we observe the population for a very long time.

